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Abstract 
Breast cancer is a globally prevalent and severe disease. Understanding cancer cell behavior is crucial 
for effective treatments. Microgravity, like in space, affects cellular functions. Using a one-dimensional 
hyperbolic equation, we assess microgravity's influence on breast cancer growth. Applying numerical 
methods, we analyze cell growth patterns. The equation represents cell diffusion and proliferation in a 
microgravity environment. By discretizing it into linear equations and employing the Jacobi and Gauss-
Seidel methods, we iteratively update cell densities until convergence. Results reveal distinct behavior 
under microgravity, with slower cancer cell mobility and altered growth patterns. The Gauss-Seidel 
method demonstrates faster convergence, making it suitable for modeling breast cancer growth in 
microgravity. These findings highlight the need to consider environmental impacts on cancer cells. 
Numerical approaches like Jacobi and Gauss-Seidel provide valuable insights for specific interventions. 
Keywords: Microgravity; Breast cancer; One-Dimensional Hyperbolic Equation; JB method, GS method  

 
Introduction 
Cancer growth in microgravity 
 Cancer, a complex and deadly disease, remains a global health challenge. Understanding how 
cancer cells behave in various situations is critical for creating successful treatments. Microgravity, which 
is experienced during spaceflight or mimicked using ground-based platforms, is one unique setting that 
has piqued the curiosity of cancer researchers. Microgravity's changing gravitational forces have been 
demonstrated to influence numerous aspects of cancer progression, such as cell proliferation, migration, 
and responsiveness to therapy. Investigating the dynamics of cancer growth in microgravity provides 
important insights into the underlying mechanisms of carcinogenesis and opens new avenues for cancer 
treatment techniques. 
 Several research have used both in vitro and in vivo models to study the effect of microgravity on 
cancer growth. Researcher investigated the behaviour of breast cancer cells in simulated microgravity 
circumstances.They discovered that microgravity affected the expression of genes involved in cell 
adhesion, migration, and angiogenesis, implying that tumour aggressiveness and metastatic potential 
may vary. 

Cancer growth research in microgravity provides a unique chance to investigate the fundamental 
mechanisms that cause tumour progression. It enables researchers to look into changes in cellular 
behaviour, signalling pathways, and interactions in the tumour microenvironment. Furthermore, 
microgravity research discoveries have the potential to improve cancer research and therapy 
development on Earth, as they provide fresh insights into the fundamental processes driving cancer 
growth and response to treatment. 
Breast Cancer 

 PDE models have recently been used in research to explore the dynamics of breast cancer. For 
example, created a mathematical model based on PDEs to simulate the growth and migration of breast 
tumour cells. The model included cell proliferation, cell adhesion, and extracellular matrix remodelling 
characteristics, offering light on the mechanisms behind tumour invasion and metastasis. 
 In addition, parabolic equations have been used to investigate the diffusion of biological 
compounds inside the microenvironment of a breast tumour. Researcher described the distribution of 
oxygen throughout breast tumours using a parabolic model. The model took into account aspects like 
oxygen consumption, blood flow, and tumour vasculature heterogeneity, providing insights into the 
establishment of hypoxic areas and their consequences for treatment response. 
 Furthermore, PDE and parabolic models have been used to study the impact of therapy on breast 
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cancer. For example, created a PDE-based model to predict the response of breast tumours following 
radiotherapy. The model included radiation transfer, tumour cell proliferation, and cell death, which 
helped optimise treatment strategies and forecast results. 
 These mathematical models provide unique insights into breast cancer behaviour and have the 
potential to assist treatment strategies. These models allow researchers to explore diverse scenarios 
and assess the efficiency of various therapeutic approaches by mimicking tumour growth, invasion, and 
treatment response. 
 The problem addressed in this research is to develop a mathematical model for breast cancer 
growth considering the influence microgravity conditions. The study aims to investigate the impact of 
gravity on breast cancer growth dynamics and compare it with the growth patterns observed in 
microgravity environments by using 1D hyperbolic equations. Additionally, the research seeks to explore 
the application of the Finite Difference Method to obtain a numerical solution for the mathematical model. 
Furthermore, the study aims to implement a sequential algorithm to efficiently analyze the performance 
of the model, specifically focusing on the growth of cells at the microgravity level. By addressing these 
research questions, this study aims to enhance our understanding of breast cancer growth mechanisms 
under varying gravitational conditions and provide insights into the computational methods and 
sequential applicable to such investigations. 
 

Figure 1 Research Scope 

 

 
 

Gravitational Field on Earth 

   𝑔𝐸𝐴𝑅𝑇𝐻 =  
𝐺𝑀 𝐸𝐴𝑅𝑇𝐻

(𝑟𝐸𝐴𝑅𝑇𝐻)2      (1)  

 

𝑔𝐸𝐴𝑅𝑇𝐻 =  
(6.67 x 10−11 Nm2/𝑘𝑔2)(5.97 x 1024 kg) 

(6.37 x 106 m)2
 

 

𝑔𝐸𝐴𝑅𝑇𝐻 =  9.81 𝑁/𝑘𝑔 
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Gravitational Field in Microgravity State 

   𝑔𝐼𝑆𝑆 =  
𝐺𝑀 𝐸𝐴𝑅𝑇𝐻

(𝑟𝐸𝐴𝑅𝑇𝐻+𝐼𝑆𝑆)2     (2) 

𝑔𝐼𝑆𝑆 =  
(6.67 x 10−11 Nm2/𝑘𝑔2)(5.97 x 1024 kg) 

(4.58 ×  1013 m)2
 

 

𝑔𝐼𝑆𝑆 =  8.69 𝑁/𝑘𝑔 = μp(x,t) 

Research Methodology 

1D Problem Formulating 

  
1

𝑐2  
𝜕2𝑝(𝑥,𝑡)

𝜕𝑡2 +  𝛾 
𝜕𝑝(𝑥,𝑡)

𝜕𝑡
= ∇. (𝑐∇𝑝(𝑥, 𝑡)) + 𝜇𝑝(𝑥, 𝑡)   (3) 

c - the sound speed of the tissue being traversed and  

x - space  

t - time variables 

𝛾 - damping or attenuation parameter 

𝜇𝑝(𝑥, 𝑡) – controllability parameters 

 

Hyperbolic Partial Differential Equations 

The wave equation is given by the differential equation: 

  
𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) − 𝛼2 𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0    (4) 

Subject to the boundary conditions  
   𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, 𝑡 > 0     (5) 
And the initial conditions  
   𝑢(𝑥, 0) = 𝑓(𝑥), 0 ≤ 𝑥 ≤ 𝐿     (6) 

   
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔(𝑥), 0 ≤ 𝑥 ≤ 𝐿     (7) 

To set up the finite-difference method, assume 𝑢 = 𝑓(𝑥) is a function of the independent variables 𝑥 and 

𝑡. Subdivide the x-plane into sets of equal rectangles if sides 𝛿𝑥 = ℎ and 𝛿𝑡 = 𝑘. Writing this set of 
equations in matrix form gives, 

   
Figure 2 Matrix Form 

 
Discretization 

We introduce a time grid t_n=n∆t for n=0,1,2,… and ∆t is the time step size. We set p^n (x)=p(x,t_n )as 
the nth iterate of the pressure at the global point x. The time derivatives in (1) are discretized by centered 
difference formula, which gives the semi-discrete scheme as the following, 

  
𝑝𝑛+1−2𝑝𝑛+𝑝𝑛−1

∆𝑡2 + 𝛾𝑐2 𝑝𝑛+1−𝑝𝑛−1

2∆𝑡
= 𝑐2∆2𝑝𝑛 + 𝜇𝑝𝑛n    (8)  

 

To derive the finite-difference discretization for the above partial differential equation (PDE), we will first 
use the centered difference formula to discretize the spatial derivatives, followed by the time derivatives. 



Syafiqah Kamsani, Norma Alias (2023) Proc. Sci. Math. 17: 186-201 
 

 

189 

Let's go over each method's steps which is JB and GS method. 
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Finite Difference Discretization using JB  

Discretize the spatial derivatives using centered difference formula: 

   ∇. (𝑐∇𝑝(𝑥, 𝑡)) ≈ (
𝑐2

ℎ2) (𝑝𝑖+1
𝑛 − 2𝑝𝑖

𝑛 + 𝑝𝑖−1
𝑛 )    (9) 

Now, discretize the time derivatives using centered difference formula: 

     (
𝜕2𝑝(𝑥,𝑡)

𝜕𝑡2 ) ≈ (
𝑝𝑖

𝑛+1+2𝑝𝑖
𝑛+𝑝𝑖

𝑛−1

∆𝑡2 )   (10) 

     (
𝜕𝑝(𝑥,𝑡)

𝜕𝑡
) ≈ (

𝑝𝑖
𝑛+1−𝑝𝑖

𝑛−1

2∆𝑡
)    (11) 

Substitute the discretization into the original PDE: 

 (
𝑝𝑖

𝑛+1−2𝑝𝑖
𝑛+𝑝𝑖

𝑛−1

∆𝑡2 ) + 𝛾 (
𝑝𝑖

𝑛+1−𝑝𝑖
𝑛−1

2∆𝑡
) = (

𝑐2

ℎ2) (𝑝𝑖+1
𝑛 − 2𝑝𝑖

𝑛 + 𝑝𝑖−1
𝑛 ) + 𝜇𝑝𝑖

𝑛   (12) 

Simplify the equation to get the semi-discrete scheme using Jacobi method: 

  𝑝𝑖
𝑛+1 = (

𝑘22𝛼2

ℎ2 ) 𝑝𝑖+1
𝑛 + 𝑝𝑖−1

𝑛 + 2 (
1−(𝑘22𝛼2

ℎ2 ) 𝑝𝑖
𝑛 − 𝑝𝑖

𝑛−1   (13) 

 

Finite Difference Discretization using GS 

Discretize the spatial derivatives using centered difference formula same with equation (9). Then, 
discretize the time derivatives using centered difference formula that is duplicate with equation (10) and 
(11). We substitute the discretization into the original PDE that is equivalent to equation (12). Next, we 
simplify the equation to get the semi-discrete scheme using Gauss-Seidel method: 

  𝑝𝑖
𝑛+1 = 𝜆2(𝑝𝑖+1

𝑛 ) + 2(1 − 𝜆2)(𝑝𝑖
𝑛) + 𝜆2(𝑝𝑖−1

𝑛+1) − 𝑏𝑖    (14) 

Algorithm 
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Figure 3 Simulation of Pressure Field Evolution using Jacobi Method and Gauss-Seidel 

Method 

Results and Discussion 

Pressure of Breast Cancer in 30 Days 

 

Start

Initialize parameters

- Set the number of spatial grid points 

- Set the length of the spatial domain 

- Calculate the spatial grid spacing 

- Set the wave speed 

- Set the time step size 

- Set the final simulation time 

- Define the time steps of interest

Initialize Pressure 
Field

Update Pressure Field 
using Jacobi Method

Print Results

Visualization

End

    Days   

Grid 5 10 15 20 25 30 

1 0 0 0 0 0 0 

2 11933835.7
40 

3.59651744e+0
8 

9.11793814e+0
9 

2.27513913e+1
1 

5.66857414e+1
2 

1.41214003e+1
4 

3 24539416.2
80 

6.82266162e+0
8 

1.71506356e+1
0 

4.27621226e+1
1 

1.06535178e+1
3 

2.65395712e+1
4 

4 37451047.2
72 

9.28384854e+0
8 

2.31294890e+1
0 

5.76185921e+1
1 

1.43535733e+1
3 

3.57566979e+1
4 

5 45231143.5
10 

1.06281733e+0
9 

2.63184472e+1
0 

6.55254155e+1
1 

1.63223760e+1
3 

4.06610392e+1
4 

6 45231143.5
10 

1.06281733e+0
9 

2.63184472e+1
0 

6.55254155e+1
1 

1.63223760e+1
3 

4.06610392e+1
4 

7 37451047.2
72 

9.28384854e+0
8 

2.31294890e+1
0 

5.76185921e+1
1 

1.43535733e+1
3 

3.57566979e+1
4 

8 24539416.2
80 

6.82266162e+0
8 

1.71506356e+1
0 

4.27621226e+1
1 

1.06535178e+1
3 

2.65395712e+1
4 

9 11933835.7
40 

3.59651744e+0
8 

9.11793814e+0
9 

2.27513913e+1
1 

5.66857414e+1
2 

1.41214003e+1
4 

10 0 0 0 0 0 0 
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  Table 1 Pressure of Breast Cancer in 30 Days by using Jacobi Method 

 

 

 
 

  Figure 4 Graph of Pressure Field over Time (Jacobi) 
 

Table 1 shows the pressure of breast cancer in 30 days by using Jacobi method in microgravity state 
computed using Python of mathematical model in this research. Figure 4 shows the pressure inside the 
breast for every 5 days within 1 month based on Table 1 by using Jacobi method in microgravity state. 
Therefore, the growth of breast cancer can be visualized from its pressure. 
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  Table 2 Pressure of Breast Cancer in 30 Days by using Gauss-Seidel Method 

 

 
   Figure 5 Graph of Pressure Field over Time (Gauss-Seidel) 

 
Table 2 shows the pressure of breast cancer in 30 days by using Gauss-Seidel method in microgravity 
state computed using Python of mathematical model in this research. Figure 5 shows the pressure inside 
the breast for every 5 days within 1 month based on Table 2 by using Jacobi method in microgravity state. 
Therefore, the growth of breast cancer can be visualized from its pressure. 

  

    Days   

Grid 5 10 15 20 25 30 

1 6.94397193
e-05 

6.94397193e-05 6.94397193e-05 6.94397193e-05 6.94397193e-05 6.94397193e-05 

2 9.03134678
e-04 

1.06381509e-01 2.25440468e+0
1 

5.50657350e+0
3 

1.39191059e+0
6 

3.54563859e+0
8 

3 2.11859737
e-03 

3.24643278e-01 7.25233602e+0
1 

1.79455044e+0
4 

4.54953987e+0
6 

1.15966813e+0
9 

4 3.65687325
e-03 

7.07047932e-01 1.67135294e+0
2 

4.19206188e+0
4 

1.06600951e+0
7 

2.71905629e+0
9 

5 5.43260585
e-03 

1.30545753e+0
0 

3.25615803e+0
2 

8.26854450e+0
4 

2.10839049e+0
7 

5.38107293e+0
9 

6 7.34427960
e-03 

2.14478177e+0
0 

5.59619974e+0
2 

1.43524185e+0
5 

3.66766770e+0
7 

9.36513478e+0
9 

7 9.23386386
e-03 

3.15111245e+0
0 

8.49145985e+0
2 

2.19272237e+0
5 

5.61167162e+0
7 

1.43336495e+1
0 

8 1.06018178
e-02 

3.98092445e+0
0 

1.09193496e+0
3 

2.82999633e+0
5 

7.24830703e+0
7 

1.85172150e+1
0 

9 9.54634955
e-03 

3.66833740e+0
0 

1.01025204e+0
3 

2.62044504e+0
5 

6.71277838e+0
7 

1.71497609e+1
0 

10 0 0 0 0 0 0 
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Number of Iterations 

    

Figure 6 Results for number of iterations between JB and GS 
 

    

Figure 7 Graph for number of iterations between JB and GS  
 

The Jacobi method required 32 iterations to achieve convergence, whereas the Gauss-Seidel method 
displayed faster convergence, achieving the target tolerance level in only 11 iterations. This suggests that 
the Gauss-Seidel method was more efficient than the Jacobi method, as it reached convergence in much 
less iterations. As a result, the Gauss-Seidel approach has the potential to reduce computational time and 
resources. 
 

    

 
Figure 8 Results for execution time between JB and GS 
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 Figure 9 Graph for execution time between JB and GS  

 
The comparison of execution times for the Jacobi and Gauss-Seidel algorithms yields some interesting 
findings. The Jacobi technique displayed an efficient computing performance with a reasonably short 
execution time of 0.0007198 seconds. On the other hand, the Gauss-Seidel method had an execution 
time of 9.7e-0.6 seconds, which was much faster than the Jacobi method. This indicates that the Gauss-
Seidel approach is highly efficient in terms of calculation. 
 

 
Computational Cost 

    

 
Figure 10 Results for computational cost between JB and GS 
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Figure 11 Chart for computational cost between JB and GS 
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The Jacobi approach has a computational cost of 380 FLOPs (Floating Point Operations), whereas the 
Gauss-Seidel method had a substantially reduced cost of 165 FLOPs. When compared to the Jacobi 
technique, the Gauss-Seidel method is more computationally efficient and takes less operations to 
achieve convergence. The lower computational cost of the Gauss-Seidel method suggests that it can 
save computational resources and reduce the overall processing time. 
 
Root Mean Square Error (RMSE) 

   

 
Figure 12 Results for RMSE between JB and GS 

 
 

  
Figure 13 Chart for RMSE between JB and GS 

 
The Jacobi technique produced an RMSE of 1.18859e+16, but the Gauss-Seidel method produced a 
much lower RMSE of 4.08248. This significant difference in RMSE shows that the Gauss-Seidel approach 
is more accurate than the Jacobi method for the given linear system of equations. Based on these results, 
the Gauss-Seidel method outperforms the Jacobi method in terms of solution accuracy. The Gauss-Seidel 
method's lower RMSE indicates its ability to better approximate the true solution, resulting in more exact 
results for solving linear systems of equations. 
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Conclusion and Recommendations 

Research Outcomes 

 

 

 
 
 
 

Table 3 Research Outcomes of JB and GS 
 

Conclusions 

The Jacobi and Gauss-Seidel methods exhibit distinct behavior in resolving linear systems of equations. 
The Gauss-Seidel approach outperformed the Jacobi method in several aspects, making it a better choice 
for real-world applications. 
 
Compared to Jacobi, Gauss-Seidel converged faster with only 11 iterations, while Jacobi required 32 
iterations. The execution time for Gauss-Seidel was 9.7e-06 seconds, much shorter than Jacobi's 
0.0007198 seconds, indicating higher computing efficiency. Gauss-Seidel also had a lower computational 
cost of 165 FLOPs, while Jacobi needed 380 FLOPs, making it more resource-efficient. 
 
Furthermore, Gauss-Seidel achieved a lower RMSE of 4.08248, indicating higher accuracy compared to 
Jacobi's RMSE of 1.18859e+16. Overall, Gauss-Seidel excelled in convergence speed, execution time, 
computing cost, and solution accuracy, making it the preferred choice for solving linear systems of 
equations. These findings offer valuable insights for selecting the right approach in applications requiring 
prompt and accurate linear system solutions. 

 
Recommendations 

The research findings comparing Jacobi and Gauss-Seidel methods can guide future investigations into 
iterative techniques in microgravity studies, emphasizing the computational efficiency and accuracy of 
Gauss-Seidel. Prospective research can explore using iterative methods, particularly Gauss-Seidel, for 
computational modeling of breast cancer in microgravity settings. This entails analyzing breast cancer cell 
behavior, tumor growth patterns, drug responses, and other factors influenced by microgravity. 

 

Further studies can assess the performance of various numerical algorithms, including Jacobi and Gauss-
Seidel, for modeling microgravity's effects on breast cancer. Evaluating convergence rates, computational 
costs, accuracy, and efficiency can lead to efficient and precise numerical simulations, offering insights 
into breast cancer mechanisms and guiding potential strategies for diagnosis, treatment, and prevention 
in microgravity conditions. 

 
 

 GS Method JB Method 

Number of Iterations 11 32 

Execution Time 9.7e-0.6 s 0.0007198 s 

Computational Cost 165 FLOPs 380 FLOPs 

RMSE 4.08248 1.18859e+16 
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