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Abstract 
The advection-dispersion equation (ADE) is a commonly used mathematical model for studying pollutant 
transport and dispersion in rivers. It describes the movement and spreading of a pollutant as a result of 
advection (flow) and dispersion processes. This research project studies the mathematical model of 
coupled ADE describing the pollutant and dissolved oxygen concentrations. Specifically, to obtain the 
analytical solution of steady and coupled ADE with source term and with dispersion. The model is used 
to observe the concentrations by taking the dimension along the river together with the support of graphs 
obtained using MATLAB. The result indicates that the concentration of pollutant will increase along the 
river and hence, the concentration of dissolved oxygen will decrease along the river due to reaction with 
pollutants.   
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1. Introduction 
 
Fluid movement involves both advection and diffusion. During advection, properties are moved by the 
fluid's bulk motion as the fluid's velocity field is not zero. Advection, in accordance to Phillips and Castro 
(2014), is the mechanical movement of solutes in conjunction to the bulk flux of fluid.  Advection is driven 
by the gradient in the total mechanical energy, often referring to the gravitational potential energy 
gradient. On the other hand, diffusion is the movement of molecules under a concentration gradient. 
The molecules move from higher to lower concentration until equilibrium is reached. It occurs in gases 
and liquids because random molecular movement is possible. Different solutes may have distinct 
diffusive fluxes, as their concentration distributions may vary within a single system. Plus, dispersion is 
another conveyance method that can be used in flowing water. It involves mixing processes driven by 
differential advection.  

 
In real-world instances show that different types of pollutants from commercial and domestic 

sources end up in rivers. The bacteria that break down wastes may be consumed by an excess of 
oxygen in contaminated water. When this happens, the oxygen level may drop to dangerously low levels. 
This might also occur if polluted water contains nutrients that encourage the growth of algae. Dissolved 
oxygen is used up during the decomposition and death of the algae. This will have a negative impact on 
aquatic life, including plants and fish, considerably (Peterson & Risberg, 2009). Environmental 
engineers, hydrologists, chemical engineers, geologists, soil physicists, and mathematicians are all 
concerned about the pollution of rivers today. In order to analyse a model of river pollution, we assumed 
that the ADE may be a good approximation (Bhadane & Ghadle, 2016). 

 
In a previous study conducted by Parsaie and Haghiabi (2017), they proposed a method that 

mailto:syira1206@gmail.com


Zafirah Aida Alexzman & Zaiton Mat Isa (2023) Proc. Sci. Math. 18: 207 - 212 
 

 
  

208 

combines the finite volume method as a numerical technique with artificial neural networks as a soft 
computing technique for simulation. The ANN was utilized to predict the longitudinal dispersion 
coefficient, which was then incorporated as an input parameter in the numerical solution of the ADE. 
The researchers validated the model's performance by simulating the transmission of pollutants in the 
river and comparing the results with measured data. The comparison demonstrated that the model  
exhibited  good  performance  improved the accuracy of the computer simulation in predicting pollution 
transmission in the river. Besides, Carr (2020) developed a semi-analytical Laplace-transform based 
solution for the one-dimensional linear advection-dispersion reaction problem in a layered medium. He 
developed a semi-analytical solution that extends and corrects previous Laplace transform based 
methods that merely take diffusion or reaction diffusion into consideration. The presented results are in 
great agreement with a standard numerical solution and other analytical results that are accessible in 
the literature. In addition, Abeye et al. (2022) focused on obtaining the numerical solution for an unsteady 
state fractional order ADE. They employed the Laguerre spectral collocation method in combination with 
the finite difference method to approximate the solution for the given problem. They validated the 
effectiveness of their method by providing examples and comparing the obtained solutions with the 
exact solution.  

 
On the other hand, in a recent study conducted by Permanoon, Mazaheri, and Amiri (2022), they 

focused on addressing the issue of reconstructing pollutant source intensity functions for the pollutant 
transport equation in rivers, known as the inverse problem. They proposed a unique analytical method 
that combines the quasi-reversibility method with the Fourier transform tool. This method allows for 
solving the inverse problem of the ADE in rivers, considering a one-dimensional domain and different 
pollutant loading patterns. The analytical solution obtained through this method demonstrates its 
computational efficiency, high level of accuracy, and potential practical applicability, particularly when 
dealing with concentration data that may have errors. Also, Shilsar, Mazaheri, and Samani (2023) 
proposed semi-analytical solution aims to predict and describe pollutant transport in different river 
networks. The method focuses on one branch of the river network, considering advection and dispersion 
phenomena. Through the Laplace transform and considering diffusion and mass conservation 
equations, mass balance and diffusion matrices are obtained in terms of the Laplace variable. The 
results demonstrate that the proposed semi-analytical solution effectively models pollutant transport and 
captures critical features in complex river network configurations.  

 
This research project will focus on the analytical solution for the one-dimensional ADE describing 

the pollutant and dissolved oxygen concentration in river. To be specific, the aim is to obtain the 
analytical solution of steady and coupled ADE of pollutant and dissolved oxygen concentration with 
source term and with dispersion. 
 
2. Mathematical Model 
 
In this case, a coupled equation for the concentration of pollutant, 𝐶(𝑥, 𝑡)(𝑘𝑔𝑚!") and dissolved oxygen, 
𝑋(𝑥, 𝑡)(𝑘𝑔𝑚!") is considered. Dissolved oxygen refers to the amount of oxygen gas that is dissolved in 
the water of river ecosystem. It is a crucial factor in determining the environment of the river's quality. 
When oxygen and pollutant interact, a coupling scenario arises. In order to observe the concentration, 
a one-dimensional model is used along the length of river. According to Paudel, Kaffle and Bhandari 
(2022), the coupled equations in one dimension can be expressed as, 

𝜕(𝐴𝐶)
𝜕𝑡 = 𝐷

𝜕#(𝐴𝐶)
𝜕𝑥# −

𝜕(𝑢𝐴𝐶)
𝜕𝑥 − 𝑘$

𝑋
𝑋 + 𝑘 𝐴𝐶 + 𝑞𝐻

(𝑥)	; 			0 ≤ 𝑥 < 𝐿	, 𝑡 > 0																									(1) 

𝜕(𝐴𝑋)
𝜕𝑡 = 𝐷%

𝜕#(𝐴𝑋)
𝜕𝑥# −

𝜕(𝑢𝐴𝑋)
𝜕𝑥 − 𝑘#

𝑋
𝑋 + 𝑘 𝐴𝐶 + 𝛼

(𝑆 − 𝑋); 0 ≤ 𝑥 < 𝐿͵𝑡 > 0																							(2) 

The Heaviside function 𝐻(𝑥) is represented in equation (1) by 

𝐻(𝑥) = ?	1	if		0 < 𝑥 < 𝐿	
0					otherwise 																																																																		(3) 
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Based on equations (1) and (2), 𝑢(𝑚𝑑𝑎𝑦!$) denotes water velocity in the direction of 𝑥, 
𝐷(𝑚#𝑑𝑎𝑦!$) denotes pollutant’s dispersion coefficient in the same direction, 𝐷%(𝑚#𝑑𝑎𝑦!$)	is the 
dissolved oxygen’s dispersion coefficient in the same direction,	𝑆(𝑘𝑔𝑚!") is the saturation oxygen 
concentration, 𝑘$(𝑑𝑎𝑦!$) is the pollutant’s degradation rate coefficient,	𝑘#(𝑑𝑎𝑦!$) is the dissolved 
oxygen’s degradation rate coefficient, 𝛼(𝑚#𝑑𝑎𝑦!$) is the mass transfer of oxygen from air to water, 
𝑞(𝑘𝑔𝑚!$𝑑𝑎𝑦!$)  is  the additional  pollutant  rate along the river, 𝑘(𝑘𝑔𝑚!") is the half-saturated  oxygen 
demand concentration for pollutant decay and 𝐴(𝑚#) is the cross-section of the river. 

It is assumed that the parameters 𝐴, 𝑢, 𝑞, 𝛼 and 𝑆	are constants (Li, 2006). In the case of a river 
where pollutants and contaminants are discharged, the rate of growth of dissolved oxygen concentration 
is determined by the difference between the saturation concentration, 𝑆 and the actual concentration of 
dissolved oxygen, 𝑋, represented as 𝛼(𝑆	 − 	𝑋). This difference influences the movement of oxygen from 
the air into the river. There is interaction between pollutant concentration, 𝐶, and the dissolved oxygen 
concentration, 𝑋. This equation is solved under the boundary conditions which are, 

𝐶(0) = 0																																																																																															(4) 

𝑋(0) = 𝑆																																																																																															(5) 

where 𝐶 is the pollutant concentration and 𝑋 is the dissolved oxygen concentration  for the case when 
dispersion coefficient 𝐷	 ≠ 	0	and 𝐷% ≠ 0, and 𝑆 is the saturated oxygen concentration. 
 
3. Analytical Solution 
 
A steady state model that involves dispersion terms, 𝐷 ≠ 0,𝐷% ≠ 0 and 𝑘 is negligible, 𝑘 = 0 is utilized 
in this model. The equations can be expressed as, 

								𝐷
𝑑#(𝐴𝐶)
𝑑𝑥# −

𝑑(𝑢𝐴𝐶)
𝑑𝑥 − 𝑘$

𝑋
𝑋 + 𝑘 𝐴𝐶 + 𝑞𝐻

(𝑥) = 0	; 	𝑥 > 𝐿	, 𝑡 > 0																																(6)	

				𝐷%
𝑑#(𝐴𝑋)
𝑑𝑥# −

𝑑(𝑢𝐴𝑋)
𝑑𝑥 − 𝑘#

𝑋
𝑋 + 𝑘 𝐴𝐶 + 𝛼

(𝑆 − 𝑋) = 0	; 	𝑥 > 𝐿	, 𝑡 > 0																																(7) 

The Heaviside function, 𝐻(𝑥) = 1 is considered as mentioned in (3). Since 𝑘 = 0, the equations (6) and 
(7) become, 

𝐷
𝑑#(𝐴𝐶)
𝑑𝑥# −

𝑑(𝑢𝐴𝐶)
𝑑𝑥 − 𝑘$𝐴𝐶 + 𝑞 = 0																																																												(8) 

				𝐷%
𝑑#(𝐴𝑋)
𝑑𝑥# −

𝑑(𝑢𝐴𝑋)
𝑑𝑥 − 𝑘#𝐴𝐶 + 𝛼(𝑆 − 𝑋) = 0																																																												(9) 

From equation (8), it can be simplified to, 

																											𝐷𝐴
𝑑#(𝐶)
𝑑𝑥# − 𝑢𝐴

𝑑(𝐶)
𝑑𝑥 − 𝑘$𝐴𝐶 + 𝑞 = 0																				 

or 

𝑑#(𝐶)
𝑑𝑥# −

𝑢
𝐷	
𝑑(𝐶)
𝑑𝑥 −

𝑘$
𝐷 𝐶 = −

𝑞
𝐷𝐴																																															(10) 

This is the second order ordinary differential equations, where it can be shown that the general 
solution is	

𝐶(𝑥) = 𝑐$𝑒('!()% + 𝑐#𝑒('*()% +
𝑞

−𝑘$𝐴
	. 

where 

𝛿 =
𝑢
2𝐷 

and 
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																	𝛽 =
Y𝑢# + 4𝐷𝑘$

2𝐷  

 After applying the boundary condition (4), the pollutant concentration, 𝐶(𝑥) can be obtained as 
 

𝐶(𝑥) =

⎩
⎨

⎧
𝑞
𝑘$𝐴

]1 − ^
𝛿 + 𝛽
2𝛽 _ 𝑒('!()%` , 𝑖𝑓	𝑥 ≥ 0

									
𝑞
𝑘$𝐴

^
𝛽 − 𝛿
2𝛽 _𝑒('*()% ,											𝑖𝑓	𝑥 < 0

																																												(11) 

 On the other hand, equation (9) can be simplified as 

																						𝐴𝐷%
𝑑#(𝑋)
𝑑𝑥# − 𝑢𝐴

𝑑(𝑋)
𝑑𝑥 − 𝑘#𝐴𝐶 + (𝛼𝑆 − 𝛼𝑋) = 0																																																	

or	

																																			
𝑑#𝑋
𝑑𝑥# −

𝑢
𝐷%
𝑑𝑋
𝑑𝑥 −

𝛼
𝐴𝐷%

𝑋 =
𝑘#
𝐷%
𝐶 −

𝛼𝑆
𝐴𝐷%

.																																												(12) 

This is the second order ordinary differential equations, where it can be shown that the general solution 
is 

𝑋(𝑥) = 𝑐"𝑒(+!,)% + 𝑐-𝑒(+*,)% − ^
𝑘#𝐴𝐶 + 𝛼𝑆

𝛼 _			 

where 

𝛾 =
𝑢
2𝐷%

 

 and 

𝜂 =
f𝑢# + 4𝛼𝐷%2

2𝐷%
 

Hence, after applying the boundary condition (5), the general solution of dissolve oxygen concentration, 
𝑋(𝑥) is obtained as  

𝑋(𝑥) =

⎩
⎨

⎧𝑆 −
𝑘#𝑞
𝑘$𝛼

+
𝑘#𝑞
𝑘$

]^
𝛿 + 𝜂
2𝜂𝛼 −

𝛿 + 𝛽
4𝛽𝜂𝐴∗ +

𝛿 − 𝛽
4𝛽𝜂𝐵∗_ 𝑒

(+!,)% −
𝛿 + 𝛽
2𝛽𝐴∗ 𝑥𝑒

('!()%` , 𝑖𝑓	𝑥 ≥ 0

									𝑆 +
𝑘#𝑞
𝑘$

]^
𝛿 − 𝜂
2𝜂𝛼 −

𝛿 + 𝛽
4𝛽𝜂𝐴∗ +

𝛿 − 𝛽
4𝛽𝜂𝐵∗_ 𝑒

(+*,)% −
𝛿 − 𝛽
2𝛽𝐵∗ 𝑥𝑒

('*()%` ,				𝑖𝑓	𝑥 < 0
												(13) 

where 

𝐴∗ = 2𝐴𝐷%(𝛿 − 𝛽) − 𝑢𝐴 

𝐵∗ = 2𝐴𝐷%(𝛿 + 𝛽) − 𝑢𝐴 

 
 
4. Result and Discussion 
 
Equation (11) is acquired by first utilising a steady state model that involves dispersion terms, 𝑫 ≠ 𝟎,
	𝑫𝒙 ≠ 𝟎, and the concentration of half-saturated oxygen demand for pollutant degradation is negligible, 
	𝒌 = 𝟎 to the coupled equations (1) and (2). The complementary function and particular integral of 
equation (10) are then used to solve the second order differential equation. Boundary condition (4) is 
then used to produce the final solution for pollutant concentration, 𝑪 as shown in (11). 
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The same approach is used for equation (13) where the complementary function and particular 
integral of equation (12) are then used to solve the second order differential equation. The final solution 
of dissolved oxygen concentration, 𝑋, is obtained after applying boundary condition (5), producing (13). 
Equation (11) and (13) then can be used for plotting graphs in MATLAB in order to observe the behaviour 
of pollutant and dissolved oxygen concentration for 𝑥 ≥ 0. 
 

Figure 1 illustrates the result of equation (11) formed by the process of second order differential 
equation. It shows the variation of pollutant concentration, 𝐶 in the range 0 ≤ 𝑥 ≤ 10. In order to test the 
model, we consider parameters 𝐴, 𝑢, 𝑞, 𝑘$	and 𝐷 to be 1 (Wadi et al., 2014). From Figure 1, we can see 
that 𝐶 increases as 𝑥 increases. It reaches to maximum as 𝑥 → ∞. In general, concentration of pollutant 
increases as 𝑥 increases.  

 

      
Figure 1 Steady and coupled ADE with source term and with dispersion described by equation 

(11) for 𝐴, 𝑢, 𝑞, 𝑘$, 𝐷 = 1. 
 

Aside from that, Figure 2 illustrates the result of equation (13) using the same method as equation 
(11). It shows the variation of dissolved oxygen concentration, 𝑋 in the range 0 ≤ 𝑥 ≤ 10. In order to test 
the model, we consider parameters 𝐴, 𝑆, 𝑢, 𝑞, 𝐷, 𝐷%	, 𝑘$ and 𝑘# to be 1 and 𝛼 = 0.99 which is close to 1 
(Wadi et al., 2014). Based on Figure 2, we can see that 𝑋 decreases as 𝑥 increases. It shows that 
oxygen level decreases due to reaction with pollutants. It reaches to minimum as 𝑥 → ∞. 

 

                                    
Figure 2 Steady and coupled ADE with source term and with dispersion described by equation 

(13) 𝐴, 𝑆, 𝑢, 𝑞, 𝐷, 𝐷%	, 𝑘$	, 𝑘# = 1 and 𝛼 = 0.99. 
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Conclusion 
 
In general, the objectives of obtaining the analytical solution for the steady and coupled ADE with source 
term and with dispersion have been successfully accomplished. The mathematical model is solved using 
complementary function and particular integral describing the pollutant and dissolved oxygen 
concentration under the specified boundary conditions. Once the final analytical solution has been 
obtained, the outcomes are examined using MATLAB. The same sets of parameter values are applied 
but different values are used for the mass transfer of oxygen from the air to the water, 𝛼, in the dissolved 
oxygen concentration model. The outcome is then graphically analyzed on the behavior of pollutant and 
dissolved oxygen concentration. The result demonstrates that the concentration of pollutant will 
increases along the river and hence, the concentration of dissolved oxygen will decrease along the river 
due to reaction with pollutants. 
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