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Abstract 
The purpose of this study is to investigate the dynamics of quasi-Volterra quadratics stochastics 
operators (QSO) on 1-dimensional simplex. The quasi-Volterra QSO is classified into two types, that is, 
Type and Type 2. In both cases, the Jacobian technique is used to describe their fixed point(s). The 
stability of the fixed point(s) is shown. The behavior of the fixed point of an operator can be classified 
into three parts, namely, attracting, repelling and saddling. For Type 1, fixed points of the function 𝑓(𝑥) =
−0.26𝑥! + 1.02𝑥 + 0.24 are x=1 and x=0.9231. Fixed points for 𝑓(𝑥) = 0.63𝑥! − 0.36𝑥 + 0.73 are x=1 
and x=1.1587. While, 𝑓(𝑥) = 1.38𝑥! − 1.32𝑥 + 0.94 have fixed points x=1 and x=0.6812. Lastly, fixed 
points of 𝑓(𝑥) = −0.23𝑥! + 1.08𝑥 + 0.15 are x=1 and x=-0.6527. For Type 2, fixed points of the function 
𝑓(𝑥) = −0.1𝑥! + 0.4𝑥 are x=0 and x=-6. For 𝑓(𝑥) = −0.3𝑥! + 1.2𝑥 have fixed points x=0 and x=0.6667. 
While, fixed points of 𝑓(𝑥) = −0.9𝑥! + 1.6𝑥 are x=0 and x=0.6667. Furthermore, the function 𝑓(𝑥) =
0.3𝑥! + 0.2𝑥 have fixed points x=0 and x=0.2667. The Maple 13 is used in order to study the dynamical 
behaviours of the operators. The trajectories of each point are analysed. The trajectories are shown to 
be converged to the attracting fixed point which describe dynamics of the quasi-Volterra QSO.  
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1. Introduction 
 
Nonlinear operators can be used to explain a wide variety of systems. The quadratic example is among 
the simplest nonlinear instances. It has been demonstrated that quadratic dynamical systems are an 
excellent source of analysis for the examination of dynamical properties and modelling in a variety of 
fields, including population dynamics, physics, economy, and mathematics. 

 
Lyubich et al. (1992) noted that uses of QSO on population genetics were in addition to 

Bernstein's work. The following scenario can be used to identify the species time development. We will 
define x((0))=(x 1((0)),..., x n((0))) as the probability distribution of the species in an early state of that 
population. Let I = 1, 2, n be the n kind of species in a population. P_ is the likelihood that an individual 
from the ith and jth species will cross-fertilize and give rise to an individual from the kth species (ij,k). 
Given x((0))=(x 1((0)),...,x n((0))), we may apply QSO as a total probability to find the probability 
distribution of the first generation, x((1))=(x 1((1)),...,x n((1))). 

 
Additionally, according to Ganikhodzhaev et al. (2017), each QSO defines an algebraic structure 

termed genetic algebra on the vector space Rn that contains the simplex. According to Lyubich (1971), 
QSO in genetic algebra generally generated commutative and non-associative results. The space of all 
derivations is a Lie algebra with the commutator multiplication, therefore keep in mind that for any 
algebra. The Lie algebra of a given algebra's derivations is one of the key tools for understanding its 
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structure in genetic algebra, along with the idea of non-associative algebras. Additionally, multiplication 
is clearly defined in terms of derivations, demonstrating the importance of derivations in genetic algebras 
based on a number of studies about genetic algebra derivations (Costa,1982; Costa,1983; 
Gonshor,1988). As demonstrated by Micali and Revoy in 1986, the multiplication is well-defined in terms 
of derivations, showing the significance of derivations in genetic algebras. 

 
Because studying QSOs is difficult in general (unlike studying linear operators), researchers are 

likely to create classes of QSOs such Volterra-QSO, permutated Volterra-QSO, Quasi-Volterra QSO, 
Volterra-QSO, strictly non-Volterra-QSO, F-QSO, and non-Volterra (see R. Ganikhodzhaev et al., 2011). 
There are numerous classes of QSOs that can be defined and researched because all these classes 
do not encompass the entire set of QSOs. 

 
Since the quadratic stochastic operators are specified on a 1-dimensional simplex, we will limit 

our analysis to n=2 and examine the dynamics of Quasi-Volterra quadratic stochastic operators in this 
setting. Given that S 1 is compact, the fixed-point theorem states that such a mapping has at least one 
fixed point. So, we'll search for every fixed point of the operators we're considering that might be a 
candidate for an operator's trajectory. Using the Jacobian technique, we will examine the fixed point's 
stability. 
 
2. Literature Review 
 
Let 𝑉 be a mapping on the (𝑛 − 1) dimensional simplex              

                    𝑆(#$%) =	 {x = (𝑥%, 𝑥!, … , 𝑥#) ∈ 	ℝ#|𝑥' 	≥ 0,∑ 𝑥' = 1#
'(% }, 

maps into itself, 𝑉: 𝑆𝑛−1 → 𝑆𝑛−1.  V has such a form  

                      𝑉: x)* =	∑ 𝑃'+,)𝑥'𝑥+ ,			𝑘 = 1,2, … , 𝑛	#
',+(%                                                      

 where 𝑃'+,) are coefficient of heredity and   

𝑃'+,) ≥ 0,																		𝑃'+,) ,															∑ 𝑃'+,) = 1													𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛#
)(%                        

Then, 𝑉 is called Quadratic Stochastic Operator (QSO). 
Let 𝑉 be a QSO. Say that a QSO is quasi-Volterra if there exist 𝑘- such that 𝑃'+,)! > 0 for 𝑘- ≠ {𝑖, 𝑗} and 
𝑘%such that 𝑃'+,)" = 0 for 𝑘% ≠ {𝑖, 𝑗} . In this project, the case n=2 is considered.  
 
When n=2 then there are several possibilities of quasi-Volterra QSO, namely: 
 

i. Type 1, 𝑘- = 1, 𝑘% = 2 
𝑃!!,% > 0, 𝑃%%,! = 0 

 
ii. Type 2, 𝑘- = 2, 𝑘% = 1 

𝑃%%,! > 0, 𝑃!!,% = 0 
 
In case of n=2, 𝑘- 	≠ 𝑘%. 
 
3. Materials and methods 
 
The definition of fixed point will be used consistently throughout our study. Therefore, in order to 
accomplish this goal, we will solve V("x") = " analytically. Additionally, iterating the function and analytical 
analysis are required to examine the Quasi-Volterra dynamic. Additionally, the Jacobian methodology 
will be used to study the stability of the fixed point using several common linear algebraic methods. 
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Definition 3.1 Let f be mapping from set X to set X again. If any c ∈ X and f(c) = c then c is a 
fixed point of 𝑓. 

 
Definition 3.2 A fixed point 𝑥- for 𝐹:	ℝ# → ℝ# is called hyperbolic if all the eigenvalues of the 

Jacobian matrix J of the mapping F at the point 𝑥- are not equal to 1. 
 
There are three types of hyperbolic fixed points: 

(a) P is an attracting fixed point if all of the eigenvalues of J(P) are less than one in absolute value.   
(b) P is a repelling fixed point if all of the eigenvalues of J(P) are greater than one in absolute value.   
(c) P is a saddle point otherwise. In this project, we are going to consider 𝑛 = 2. Therefore, ℓ ∈ {1,2}. 

In what follows, we consider 1-Volterra and 2-Volterra.   
 
Since 𝑆% is compact, then by fixed point theorem there exist at least one fixed point for such 

mapping.  
 
4. Results and discussion 
 
Quasi-Volterra Type 1   
  
In this section, we are going describe the canonical for of Volterra acting on one dimensional simplex 
where n= 2, quasi-Volterra can form  

𝑉(x)% = (1 + 𝑏 − 2𝑎)𝑥%! + (2𝑎 − 2𝑏)𝑥% + 𝑏. 

𝑉(x)! = 1 − ((1 + 𝑏 − 2𝑎)𝑥%! + (2𝑎 − 2𝑏)𝑥% + 𝑏). 

 
Fixed Point 4.2.1 
 
The following proposition describe the quasi-Volterra Type 1.  
 
Proposition 4.1   Let f be given by (4.8). Then, the following statement holds:  

i) 𝑥 = 1 is always the fixed point of f. 
ii) The fixed-point		𝑥 = 	 .

%/.$!0
	belongs to [0,1] if 2𝑎 − 𝑏 ≤ 1	and 𝑎 ≤ %

!
. 

The following theorem describe the quasi-Volterra Type 1. 
 

Theorem 4.1: Let 𝑉 be a Quasi-Volterra Type 1. Then the points are 
(i) (1,0) 
(ii) ( .

%/.$!0
, %$!0
%/.$!0

) if 2𝑎 − 𝑏 ≤ 1 and 𝑎 ≤ %
!
. 

 
4.2.2 The stability of the fixed points  
 
Proposition 4.2   Let 𝑉 be a Quasi Volterra Type1. The following statement holds:  

i) If 𝑎 ∈ (%
!
, 1], then the fixed point is attracting. 

ii) If 𝑎 ∈ [0, %
!
), the fixed point is repelling. 

iii) If 𝑎 = %
!
 , it called non-hyperbolic fixed point. 

 
Proposition 4.3   The following statement holds:  

i) If 0 ≤ 𝑎 ≤ %
!
, then the fixed point ( .

%/.$!0
, 1 − .

%/.$!0
) is attracting. 

ii) On condition that 𝑎 = %
!
 , it called non-hyperbolic fixed point. 
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4.2.3 The Dynamic of Quasi-Volterra Type 1 
 
In this section, we are going to consider several examples of Quasi-Volterra QSO. We will specify 
concrete value of a and b. Then by using Maple 13 and RStudio Software, we compute the trajectories 
and the graph of the considered operators. 
 

For Type 1, the function 𝑓(𝑥) = −0.26𝑥 2 + 1.02𝑥 + 0.24 (a=0.75, b=0.24) was converge to x=1 in 
Figure 4.2 and 4.3. For 𝑓(𝑥) = 0.63𝑥 2 − 0.36𝑥 + 0.73 (a=0.55, b=0.73) was converge to both fixed points 
in Figure 4.5 and 4.6. While, 𝑓(𝑥) = 1.38𝑥 2 − 1.32𝑥 + 0.94 (a=0.28, b=0.94) was converge at x=0.6812 
in Figure 4.8 and 4.9. Furthermore, function 𝑓(𝑥) = −0.23𝑥 2 + 1.08𝑥 + 0.15 (a=0.69, b=0.15) was 
converge to x=1 in Figure 4.11 and 4.12.  
 
4.3 Quasi-Volterra Type 2 
 
In this section, we are going describe the canonical for of Volterra acting on one dimensional simplex 
where n= 2, quasi-Volterra can form  
 

𝑉(x) = (1 − 𝑎 − 2𝑏)𝑥%! + 2𝑏𝑥% 
 
                                              𝑉(x)! = 1 − (1 − 𝑎 − 2𝑏)𝑥%! + 2𝑏𝑥%.                                               
 
4.3.1 Fixed Point 
 
The following proposition describe the quasi-Volterra Type 2.  
 
Proposition 4.4   Let f be given by (4.13). Then, the following statement holds:  

i) 𝑥 = 0 is always the fixed point of f. 
ii) The fixed-point		𝑥 = 	 $!./%

%$0$!.
	belongs to [0,1] if 2𝑏 + 𝑎 ≥ 1	and 𝑏 ≥ %

!
. 

Theorem 4.2: Let 𝑉 be a Quasi-Volterra Type 2. Then the points are 
(i)  (0,1) 
(ii) ( $!./%

%$0$!.
, $0
%$0$!.

) if 2𝑏 + 𝑎 ≥ 1	and 𝑏 ≥ %
!
. 

 
4.3.2 The stability of the fixed points 
 
The next proposition fully describes the fixed point of f given by (4.14) that is inside [0,1]. 
 
Proposition 4.5   The following statement holds:  

i) If 𝑏 ∈ [0, %
!
) then (0,1) attracting. 

ii) If 𝑏 ∈ (%
!
, 1] then (0,1) repelling. 

iii) If 𝑏 = %
!
 then (0,1) non-hyperbolic fixed point. 

 
Proposition 4.6   The following statement holds:  

i) If %
!
< 𝑏 ≤ 1, then the fixed point (	 $!./%

%$0$!.
, $0
%$0$!.

) is attracting.  

ii) If 𝑏 = %
!
, the fixed point (	 $!./%

%$0$!.
, $0
%$0$!.

) is non-hyperbolic. 
 
4.3.3 The Dynamic of Quasi-Volterra Type 2 
 
In this section, we are going to consider several examples of Quasi-Volterra QSO. We will specify 
concrete value of a and b. Then by using Maple 13 and RStudio Software, we compute the trajectories 
and the graph of the considered operators. 
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For Type 2, the function 𝑓(𝑥) = −0.1𝑥 2 + 0.4𝑥(a=0.7, b=0.2) was converge at x=0 in Figure 4.14 

and 4.15. For 𝑓(𝑥) = −0.3𝑥 2 + 1.2𝑥 (a=0.1, b=0.6) was converge at x=0.6667 in Figure 4.17 and 4.18. 
While, 𝑓(𝑥) = −0.9𝑥 2 + 1.6𝑥 (a=0.3, b=0.8) was 74 converge to x=0.6667 in Figure 4.20 and 4.21. 
Furthermore, function 𝑓(𝑥) = 0.3𝑥 2 + 0.2 converge to x=0.6667 in Figure 4.20 and 4.21. Furthermore, 
function 𝑓(𝑥) = 0.3𝑥 2 + 0.2𝑥 (a=0.5, b=0.1) was converge to x= 0 in Figure 4.23 and 4.24. 
 
Conclusion 

 
In this study, the Quasi-Volterra Quadratic Stochastic Operators on 1-Dimensional   Simplex and its 
dynamical behavior is investigated. The fixed points of QSOs on one-dimensional simplex are also 
studied. The stability of fixed point by using Jacobian technique has been investigated. 

 
Quasi-Volterra quadratic stochastic operators (QSOs) take into account the Type 1 and Type 2 

dynamics of Quasi-Volterra QSO on 1-D simplex (2.1). The case n=2 was the only option in this 
investigation. 
 

The fixed point as defined in definition see (3.2) had been proven either accepted or rejected 
by considering functions 4.9 and 4.14. For type 1 and type 2 Quasi-Volterra QSO, a few fixed points 
have been calculated (s). 
 

For Type 1, the function 𝑓(𝑥) = −0.26𝑥! + 1.02𝑥 + 0.24 have fixed points x=1 and x=-0.9231. 
For 𝑓(𝑥) = 0.63𝑥! − 0.36𝑥 + 0.73 have fixed points x=1 and x=1.1587. While, 𝑓(𝑥) = 1.38𝑥! − 1.32𝑥 +
0.94 have fixed points x=1 and x=0.6812. Furthermore, function 𝑓(𝑥) = −0.23𝑥! + 1.08𝑥 + 0.15 have 
fixed points x=1 and x=-0.6527. 
 

For Type 2, the function 𝑓(𝑥) = −0.1𝑥! + 0.4𝑥 have fixed points x=0 and x=-6. For 𝑓(𝑥) =
−0.3𝑥! + 1.2𝑥 have fixed points x=0 and x=0.6667. While, 𝑓(𝑥) = −0.9𝑥! + 1.6𝑥 have fixed points x=0 
and x=0.6667. Furthermore, function 𝑓(𝑥) = 0.3𝑥! + 0.2𝑥 have fixed points x=0 and x=2.6667. 

 
Based on Proposition 4.2, if 𝑎 ∈ (%

!
, 1], then the fixed point is attracting. Uncertainty 𝑎 ∈ [0, %

!
), 

the fixed point is repelling. On condition that 𝑎 = %
!
 , it called non-hyperbolic fixed point. Besides, 

Proposition 4.3 describe that if 0 ≤ 𝑎 ≤ %
!
, then the fixed point ( .

%/.$!0
, 1 − .

%/.$!0
) is attracting. 

Furthermore, Proposition 4.5 stated that if 𝑏 ∈ [0, %
!
) then (0,1) attracting. Considering, 𝑏 ∈ (%

!
, 1] then 

(0,1) repelling. Hence, if 𝑏 = %
!
 then (0,1) non-hyperbolic fixed point. Based on Proposition 4.6, if %

!
< 𝑏 ≤

1, then the fixed point (	 $!./%
%$0$!.

, $0
%$0$!.

) is attracting.  
 
In this last section, we studied the dynamic of Quasi-Volterra type 1 and type 2 by considering 

several examples. Value of a and b has been specified to compute the trajectories and the graph of the 
considered operators. 
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