

 34

 Vol. 15, 2023, page 8-15

Vol. 15, 2023, page 34-44

Study on Application of Automatic Differentiation

Desmond Lee Ching Yiing, Yeak Su Hoe*
Department of Mathematics, Faculty of Science, UTM, Skudai, Johor Bahru, Malaysia

*Corresponding author: s.h.yeak@utm.my

Abstract
This study examines the use of Automatic Differentiation (AD) in various applications, such as
machine learning and numerical methods. It explores problems and applications related to AD,
methods for enhancing differentiation, and mathematical implementations. PyCharm, a Python
programming tool, is utilized to facilitate the mathematical implementation process. Dual numbers,
implemented through classes and methods, are used as a method of AD, allowing for simultaneous
evaluation of functions and their derivatives. Forward mode differentiation is employed to construct
the Jacobian matrix of functions with inputs and outputs, while reverse mode differentiation, also
known as backpropagation, is used for computing gradients in deep learning problems with
numerous input variables. The study showcases the effectiveness, efficiency, and simplicity of AD,
including the representation of higher order derivatives through recursive computations. It discusses
implicit deep-learning models constructed using iterative techniques like fixed-point iterations and
compares them to Newton's method. Other topics covered include AD functions using numerical
fixed points, computing derivatives using the Implicit Function Theorem, and the transformation of
AD using Jacobian-vector products (JVPs) and vector-Jacobian products (VJPs). The study also
explores Neural Ordinary Differential Equations (ODEs) and reverse-mode differentiation across
ODE solvers. Additionally, it provides an overview of the complexity of AD operations and compares
the runtime of symbolic differentiation with AD. Overall, AD proves to be a powerful tool for
computing gradients in parameter optimization and sensitivity analysis across a wide range of
applications. Future research should focus on exploring new applications using existing libraries to
fully harness the potential of AD in deep learning and other fields.
Keywords: Automatic Differentiation; numerical techniques; Python; sensitivity analysis; parameter
optimization

Introduction

This study focuses on the practical application of AD in various domains, specifically in deep

learning and optimization. AD is a method widely used in machine learning frameworks like

TensorFlow [1] and PyTorch [15] to compute derivatives of numerical functions. However, despite

its name, AD is not completely automated and can lead to inefficient code if not used carefully. To

address this, some refer to it as algorithmic differentiation. This study aims to highlight the

principles, techniques, and mathematical implementation of AD, discussing its importance and

efficiency in deep learning tasks.

The study covers a range of topics, including dual numbers, forward mode differentiation,

and reverse mode differentiation, with a focus on numerical approaches and solutions. It provides a

Python program that demonstrates the functionality of these algorithms. Additionally, the study

explores the relevance of AD in machine learning and identifies applicable scenarios.

The significance of this study lies in its exploration of accurate AD implementation strategies

that maintain mathematical precision. It also emphasizes the importance of readable and simple

code implementation, crucial for practical applications. The study acknowledges that compiling time

is not a major concern since AD programs are typically constructed once and used repeatedly for

various computations in statistical applications.

Dual Numbers

One of AD approaches involves the use of dual numbers [2]. Assume the function 𝑔 be sufficiently

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 35

smooth that it is differentiable sufficient number of times, and 𝜖 be a tiny infinitesimal parameter. 𝜖2

becomes negligible, resulting in 𝑔(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥) + 𝜖2𝑔′′(𝑥) + ⋯. Assume an augmented

object 𝑥 + 𝜖 be in the calculation of 𝑔, the gradients can be extracted from the coefficient of the 𝜖

term. The operators for dual numbers are defined as:

(𝑥 + 𝑎𝜖) + (𝑦 + 𝑏𝜖) = (𝑥 + 𝑦) + (𝑎 + 𝑏)𝜖 (addition),

(𝑥 + 𝑎𝜖)(𝑦 + 𝑏𝜖) = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖 (multiplication),

𝑥 + 𝑎𝜖

𝑦 + 𝑏𝜖
=

𝑥

𝑦
+ 𝜖 (

𝑎

𝑦
−

𝑏𝑥

𝑦2
) (division),

𝑒𝑥+𝑎𝜖 = 𝑒𝑥 + 𝑎𝜖𝑒𝑥 (exponential Taylor expansions),

sin(𝑥 + 𝑎𝜖) = sin(𝑥) + 𝑎𝜖 cos(𝑥) (trigonometric functions),

(𝑥 + 𝑎𝜖)
1
2 = √𝑥 +

𝑎𝜖

2√𝑥
 (square root).

where 𝜖2 = 0 is the fundamental property guiding these arithmetic operations. The square root can

be calculated using the Newton formula rather than a polynomial approximation. Using the Newton

formula, the fixed-point iteration of the function for finding the square root can be expressed as

𝑥𝑖+1 =
1

2
(𝑥𝑖 +

𝑦

𝑥𝑖
) , 𝑖 = 0,1,2,⋯ , 𝑛.

Forward Mode Differentiation

Each node, denoted as 𝑣, corresponds to an intermediate computation in this function [2]. Figure 1

illustrates the computational graph of the function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via forward mode.

Figure 1 Computational graph of function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via forward mode

In the view of Figure 1, assume the function 𝑔 be given by 𝑦 = 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2),

the derivative 𝑔′ is evaluated at 𝑥1 = 2 and 𝑥2 = 3. Forward mode AD only requires tracking of the

intermediary computations at each node. The following calculations are 𝑣1 = 2, 𝑣2 = 3, 𝑣3 = 6, 𝑣4 =

cos(3), and 𝑣5 ≈ 6.99. Using the dual trace and differentiating each equation, 𝑣 with respect to 𝑥2,

the expressions are: 𝑣1̇ = 0, 𝑣2̇ = 1 𝑣3̇ = 2, 𝑣4̇ = −sin(3), and 𝑣5̇ ≈ 2.14. Thus, a derivative is

assigned to each intermediate variable 𝑣𝑖 to determine 𝑣�̇� =
𝜕𝑣𝑖

𝜕𝑥2
.

It is highlighted that the vector-valued functions 𝑔, represented as 𝑔:ℝ𝑛 → ℝ𝑚 can have

multiple inputs 𝑚 and outputs 𝑛 [2]. The Jacobian matrix, denoted as 𝐽𝑔, captures the gradient

relationships between the outputs 𝑚 and inputs 𝑛 as follows:

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 36

𝐽𝑔 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

,

where 𝑦𝑚 represents the 𝑗𝑡ℎ output and 𝑥𝑛 represents the 𝑖𝑡ℎ input. In addition, forward mode AD

offers a matrix-free approach for calculating Jacobian-vector products (JVPs) as follows:

𝐽𝑔 ∙ 𝑣 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

[

𝑣1

⋮
𝑣𝑛

].

By initializing �̇� = 𝑣, JVPs can be directly computed in a single forward pass. If the function 𝑔 maps

from ℝ𝑛 to ℝ, the directional derivative along a given vector 𝑣 can be obtained by taking a linear

combination of the partial derivatives ∇𝑔. 𝑣, where the gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, ⋯ ,

𝜕𝑦

𝜕𝑥𝑛
], corresponding to

a 1 × 𝑛 Jacobian matrix that is constructed column by column using forward mode in 𝑛 evaluations.

Reverse Mode Differentiation

The reverse mode differentiation is needed in cases where the number of input variables 𝑛 is much

larger than the number of outputs 𝑚, which is often observed in deep learning tasks [2]. Reverse

mode differentiation, also known as backpropagation, is the preferred approach for computing

gradients. Assume the same function 𝑔 be 𝑦 = 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2). In primal trace, the

values of the variable are unchanged.

The dual trace in reverse mode AD is more complex compared to the forward mode. This

complexity can be confusing initially because we are more familiar with the step-by-step application

of the chain rule to propagate derivatives forward [9]. This confusion is suggested to arises partly

due to the familiarity with the chain rule as a step-by-step process for propagating derivatives

forward [12]. The chain rule can be expressed as
𝜕𝑦𝑗

𝜕𝑣𝑖
=

𝜕𝑦𝑗

𝜕𝑣𝑘
∙
𝜕𝑣𝑘

𝜕𝑣𝑖
. However, the choice of 𝑣𝑘 is not

arbitrary. 𝑣𝑘 would be the parent of 𝑣𝑖. If 𝑣𝑘 has multiple parents, the chain rule is summed up for

each parent using multivariable chain rule, yielding
𝜕𝑦𝑗

𝜕𝑣𝑖
= ∑

𝜕𝑦𝑗

𝜕𝑣𝑝
∙
𝜕𝑣𝑝

𝜕𝑣𝑖
𝑝𝜖𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖) . In this approach, each

intermediate variable 𝑣𝑖 is accompanied by an adjoint value, denoted as �̅�𝑖 =
𝜕𝑦𝑗

𝜕𝑣𝑖
, representing the

sensitively of a specific output 𝑦𝑗 with respect to the changes in the corresponding variables 𝑣𝑖, and

it can be expressed in terms of the adjoint of parents as �̅�𝑖 = ∑ �̅�𝑝 ∙
𝜕𝑦𝑗

𝜕𝑣𝑖
𝑝 .

Figure 2 illustrates the computational graph of the function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via

reverse mode.

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 37

Figure 2 Computational graph of function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via reverse mode

In the view of Figure 2, this recursive method begins at the output node 𝑦 and traverse

adjoints back to the input nodes. In addition, 𝑣1 and 𝑣2 have 𝑣3 as a parent, the following

calculations are �̅�5 = 1, �̅�4 = −1, �̅�3 = 1, �̅�2 = 2 − (−cos(3)) ≈ 2.14, and �̅�1 = 3. The reverse mode

AD computes both
𝜕𝑦

𝜕𝑥1
 and

𝜕𝑦

𝜕𝑥2
 in the complete iteration.

In the extreme case of a function 𝑔:ℝ𝑛 → ℝ, reverse mode only needs to be applied once to

compute the entire gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, ⋯ ,

𝜕𝑦

𝜕𝑥𝑛
], while forward mode would require 𝑛 passes to

achieve the same result. Similar to the matrix-free computation of JVPs using forward mode, the

transposed JVPs can be evaluated by initializing the reverse pass with �̅� = 𝑣 as follows:

𝐽𝑔
𝑇 ∙ 𝑣 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝑦1

𝜕𝑥𝑛

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

[

𝑣1

⋮
𝑣𝑚

].

Higher Order Derivatives

In this study, the notation used to represent higher order derivatives often employs a more compact

in Automatic Differentiation (AD) system supported by the previous study [3][4]. Generally, the 𝑛𝑡ℎ

order derivative is formed by composing of the derivative 𝑛 − 1 times with itself, evaluated at 𝑔(𝑥).

In order to highlight the 𝑛𝑡ℎ order derivative, parentheses are used to indicate that it is composition

of the functions
𝑑𝑛

𝑑𝑥𝑛 𝑔(𝑥).

Computation of Higher Order Derivatives via Forward Mode

Forward mode AD can be used to compute higher order derivatives. Figure 3 illustrates the

computational graph of the function 𝑔(𝑥) = sin(𝑥3) using higher order derivatives via forward mode.

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 38

Figure 3 Computational graph of function 𝑔(𝑥) = sin(𝑥3) using higher order derivatives via

forward mode

In the view of Figure 3, assume the computation flows on the graph of the function 𝑔(𝑥) =

sin(𝑥3) be calculated using higher order derivatives. 𝑥 is denoted as input variable, 𝑎(𝑥) = 𝑥3 is the

intermediate value or node, and 𝑏(𝑎) is another intermediate value or node obtained from sin(𝑎). At

node 𝑎, the first derivative of function 𝑎(𝑥) with respect to 𝑥 is calculated using power rule, yielding
𝑑

𝑑𝑥
𝑎(𝑥) = 3𝑥2. The derivative of first derivative is respect to 𝑥 is multiplied by the first derivative

itself, resulting in
𝑑2

𝑑𝑥2 𝑎(𝑥) = 6𝑥. Moving to node 𝑏, the derivatives with respect to 𝑥 is computed

again. The derivative function for 𝑏(𝑎) with respect 𝑥 is expressed as
𝑑

𝑑𝑎
𝑏(𝑎) ∙

𝑑

𝑑𝑥
𝑎(𝑥) by applying

the chain rule. The derivative of 𝑏(𝑎) with respect to 𝑎 is calculated, yielding
𝑑

𝑑𝑎
𝑏(𝑎) = cos(𝑥3).

Substituting the expressions for
𝑑

𝑑𝑎
𝑏(𝑎) and

𝑑

𝑑𝑥
𝑎(𝑥) in

𝑑

𝑑𝑥
𝑏(𝑎), we obtain

𝑑

𝑑𝑥
𝑏(𝑎) = cos(𝑥3) ∙ 3𝑥2.

The second derivative of 𝑏(𝑎) with respect to 𝑥 is expressed as
𝑑

𝑑𝑎
𝑏(𝑎) ∙

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
𝑎(𝑥)) +

𝑑

𝑑𝑥
(

𝑑

𝑑𝑎
𝑏(𝑎)) ∙

𝑑

𝑑𝑥
𝑎(𝑥) by applying the product rule. The derivative

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
𝑎(𝑥)) is calculated as

𝑑2

𝑑𝑎2 𝑏(𝑎) ∙
𝑑

𝑑𝑥
𝑎(𝑥) using chain rule, where we obtain −sin(𝑥2) 3𝑥2. By substituting the calculated

expressions for
𝑑

𝑑𝑎
𝑏(𝑎),

𝑑

𝑑𝑥
𝑎(𝑥),

𝑑

𝑑𝑥
(

𝑑

𝑑𝑎
𝑏(𝑎)) and

𝑑2

𝑑𝑎2 𝑏(𝑎) into
𝑑2

𝑑𝑥2 𝑏(𝑎), we obtain the final

expression for the second derivative as
𝑑2

𝑑𝑥2 𝑏(𝑎) = cos(𝑥3) ∙ 6𝑥 − sin(𝑥3) ∙ 3𝑥2 ∙ 3𝑥2.

Implicit Models

Lower-precision math and iterative methods like fixed-point iterations can increase the efficiency of

deep neural networks. Deep Equilibrium Models, which rely on repetitive processes to arrive at an

equilibrium state, allow for more intricate representations. Implicit models provide benefits including

innovative designs, robustness analysis, and interpretability while also making deep learning

notation simpler [10].

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 39

Fixed-Point Iteration

The output of a neural network layer is determined using the fixed-point iteration approach, where

the output 𝑦 is computed repeatedly as 𝑦 = tanh(𝜃𝑦 + 𝑥), starting with an initial guess of 𝑦 = 0.

Until convergence, this iterative method updates 𝑦𝑖+1 depending on 𝑦𝑖 and the network parameters

𝜃. This layer may be thought of as a straightforward recurrent network, with the hidden layer 𝑦

operating on the input 𝑥. Despite having only one layer parameterized by 𝜃, it benefits from the

recurrent application of the nonlinearity offered by the tanh activation function while having just one

layer parameterized by 𝜃. This layer can be mathematically represented as an implicit layer, where

𝑦𝑖+1 stands for the solution to a root-finding equation. A fixed-point equivalent form of the equation

is created, with 𝑦 = 𝑔(𝑥, 𝑦) = tanh(𝜃𝑦 + 𝑥). Starting with an initial guess 𝑦0, the iteration process

builds a sequence, updating 𝑦𝑖+1 depending on 𝑦𝑖 using the function 𝑔. The iteration keeps on

going until the condition |𝑦𝑖+1 − 𝑦𝑖| < 𝜖, which 𝜖 is a tiny convergence tolerance, is met.

In some cases, the values of 𝑦 might fluctuate without reaching a stable solution, and the

behavior relies on the value of 𝜃. However, the loop comes to an end at 𝑦𝑖+1 = tanh(𝑥), reaching a

fixed point when 𝜃 is zero. The use of fixed-point iteration and implicit models is supported by the

previous study in deep learning [13] to emphasize the importance of regularization techniques in

solving inverse problems and the integration of data-driven regularization and convex feasibility.

Alternative Methods for Finding Root Using Newton’s Method

The fixed-point iteration approach is contrasted with Newton's method, highlighting the latter's

faster convergence in a recent study [7]. Newton’s method is a significantly faster approach for

finding the solution to the function 𝑔(𝑦) = tanh(𝜃𝑦 + 𝑥). Newton’s method continues the update

until it finds a root 𝑔(𝑦) = 0 for the function 𝑔:ℝ𝑛 → ℝ𝑛. The updated equation for Newton’s

Method’s is expressed as 𝑦𝑖+1 = 𝑦𝑖 − (
𝜕𝑔𝑖

𝜕𝑦𝑖
)

−1

𝑔(𝑦𝑖), 𝑖 = 0,1,2,⋯ , 𝑛, where
𝜕𝑔𝑖

𝜕𝑦𝑖
= 𝐼 −

𝑑𝑖𝑎𝑔(sech2(𝜃𝑟𝑖
𝑦𝑖 + 𝑥))𝜃𝑖, which is Jacobian of 𝑔 with respect to 𝑦.

However, it is much complex compared to the earlier fixed-point iteration technique.

Although fewer iterations are required than in fixed-point iteration, each iteration takes considerably

longer because a unique Jacobian matrix must be formed and inverted for each sample in the

minibatch. It quickly becomes impractical to invert or even store these matrices as the hidden unit

sizes grow, especially in convolutional networks. The recent study supports this study by providing

an overview of implicit models, explaining the fixed-point iteration method, introducing an

alternative method such as Newton's method, and discussing the challenges [6].

Efficient Differentiation of Fixed Points

As shown in Deep Equilibrium models, numerical fixed points provide a technique to automate the

differentiation of functions. Differentiation may be mechanized by solving fixed-point equations,

which equal a function and its derivative. Deep equilibrium models iteratively update the input until

convergence and use fixed points to determine the equilibrium state of a system. This method is

beneficial for automating differentiation in numerous contexts, notably in the context of Deep

Equilibrium models, since it does away with the necessity for human derivative computations.

Implicit Function Theorem

The derivative of a function 𝑔:ℝ𝑛 → ℝ𝑚 at a point 𝑥 ∈ ℝ𝑛 is denoted as
𝜕𝑔

𝜕𝑥
: ℝ𝑛 → ℝ𝑚, where

𝜕𝑔

𝜕𝑥
 is a

linear function. This derivative function maps perturbations in the input space ℝ𝑛 to perturbations in

the output space ℝ𝑚. The first-order Talyor series expansion of 𝑔 at point 𝑥 can be expressed as

𝑔(𝑥 + 𝜐) = 𝑔(𝑥) +
𝜕𝑔

𝜕𝑥
∙ 𝜐 + Ο(‖𝜐‖2), where 𝜐 is perturbation vector in ℝ𝑛 and Ο(‖𝜐‖2) represents the

asymptotic upper bound on the error or approximation.

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 40

When a system of nonlinear equations in terms of 𝑦 is parameterized by 𝑥, denoted as

𝑔(𝑥, 𝑦) = 0, the nominal solution is represented by the point (𝑥0, 𝑦0). Jacobian of the solution

mapping can be evaluated at the point (𝑥0, 𝑦0) using the derivative of 𝑔. By differentiating both

sides of the equation with respect to 𝑥 and rearranging the equation, the Jacobian of the solution

mapping can be expressed as
𝜕𝑦0

𝜕𝑥0
= −(

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
.

The proposed study addresses this issue by introducing automatic implicit differentiation, an

efficient and modular approach that leverages AD and the implicit function theorem to differentiate

optimization problems [5]. By allowing the user to define an optimality function directly in Python,

the study enables the seamless integration of implicit differentiation with state-of-the-art solvers.

Transformation Used in Automatic Differentiation

Jacobian-vector products (JVPs) and vector-Jacobian products (VJPs) are the transformations

used to facilitate AD of fixed-point solvers and implicit functions. In JVPs, the Jacobian matrix
𝜕𝑔

𝜕𝑥
 of

function 𝑔(𝑥): ℝ𝑛 → ℝ𝑚 can be computed. A mapping is defined as (𝑥, 𝑣) → (𝑔(𝑥),
𝜕𝑔

𝜕𝑥
∙ 𝑣), where

parameters 𝑥 ∈ ℝ𝑛 and 𝑣 ∈ ℝ𝑛 is the right multiplication vector in JVPs. Similar to VJPs, it is

defined as the mapping (𝑥, 𝑤) → (𝑔(𝑥), 𝑤𝑇 𝜕𝑔

𝜕𝑥
), where 𝑤 ∈ ℝ𝑚 is a dummy vector, such as a

collection of the vector. Backpropagation is frequently used in reverse mode AD packages to

compute the Jacobian matrix's left multiplication in VJPs.

 Since the relationship between VJPs and the gradient of a scalar-valued function and the

significance of gradient-based optimization, JVPs and VJPs facilitate function composition, which is

a critical component of AD. The JVP of 𝑔 can be expressed by composing the JVPs of 𝑓 and ℎ

when two functions, 𝑓 and ℎ, are composed to form 𝑔 = 𝑓 ∘ ℎ. Specifically, JVPs of 𝑓 can be

defined as the mapping (𝑥, 𝑣) → (𝑓(𝑥),
𝜕𝑓

𝜕𝑥
∙ 𝑣), and the JVPs of ℎ can be defined as the mapping

(𝑦, 𝑢) → (ℎ(𝑦),
𝜕ℎ

𝜕𝑦
∙ 𝑢), then the JVPs of 𝑔 can be derived as 𝑔(𝑥) + (

𝜕𝑓

𝜕ℎ
∙
𝜕ℎ

𝜕𝑦
) 𝑢. Similar to how the

VJPs of 𝑓 and ℎ for the same composition 𝑔 = 𝑓 ∘ ℎ can be composed to get VJPs of 𝑔, indicated a

∇𝑔. If the VJPs of 𝑓 can be defined as the mapping of (𝑥, 𝑤) → (𝑓(𝑥), 𝑤𝑇 𝜕𝑓

𝜕𝑥
), and the VJPs of ℎ

can be defined as the mapping (𝑦, 𝑤) → (ℎ(𝑦), 𝑤𝑇 𝜕ℎ

𝜕𝑦
), then the VJP of 𝑔 can be determined as

𝑤𝑇 𝜕𝑓

𝜕ℎ
+ (𝑤𝑇 𝜕𝑓

𝜕ℎ
)

𝜕ℎ

𝜕𝑦
.

A past study proposed a decomposition of reverse-mode AD into linearization followed by

transposition [11]. This approach highlights the key distinction between forward-mode and reverse-

mode AD and simplifies their joint implementation.

Fixed Points of Transformation Used in Automatic Differentiation

Both JVPs and VJPs play crucial roles in AD, enabling the computation of gradients and the linkage

between Jacobians of functions and solution mappings. It involves finding a fixed-point solution

mapping 𝑦 that satisfies the fixed-point equation for any given parameter 𝑥 ∈ ℝ𝑛, represented as

𝑦(𝑥) = 𝑔(𝑥, 𝑦(𝑥)). At a certain point 𝑥0 with 𝑦0 = 𝑦(𝑥0), the derivative can be expressed as
𝜕𝑦0

𝜕𝑥0
=

(𝐼 −
𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
, where

𝜕𝑔0

𝜕𝑦0
 and

𝜕𝑔0

𝜕𝑥0
 represent the Jacobians of the function 𝑔 evaluated at that point.

This relationship connects the Jacobians of the function 𝑔 with the Jacobians of the solution

mapping 𝑦 at that particular point. For the JVPs, the mapping (𝑥0, 𝑣) → (𝑔0,
𝜕𝑔0

𝜕𝑥0
∙ 𝑣) can be

computed, yielding
𝜕𝑦0

𝜕𝑥0
∙ 𝑣 = (𝐼 −

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
∙ 𝑣. For VJPs, the mapping (𝑥, 𝑤) → (𝑔(𝑥), 𝑤𝑇 𝜕𝑔

𝜕𝑥
) is

computed, yielding 𝑤𝑇 𝜕𝑦0

𝜕𝑥0
= 𝑤𝑇 (𝐼 −

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
 .

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 41

Neural Ordinary Differential Equations

The primary challenge in training continuous-depth networks lies in conducting reverse-mode

differentiation, also called backpropagation, across the Ordinary Differential Equation (ODE) solver.

It scales linearly with the problem size, requires minimal memory, and handles numerical

inaccuracies efficiently [8].

The optimization of a loss function, which is a scalar value is the input to the ODE solver,

denoted as:

𝐿(𝑦(𝑡)) = 𝐿 (𝑦(𝑡0) + ∫ 𝑔(𝑦, 𝑡, 𝜃)𝑑𝑡
𝑡

𝑡0

),

where 𝑦 is a vector and 𝜃 is the parameter for the function. In order to compute the gradients with

respect to 𝜃 to optimize 𝐿, The adjoint is denoted as 𝑎(𝑡) =
𝜕𝐿

𝜕𝑦(𝑡)
 is to find the connection between

each moment of the hidden state 𝑦(𝑡) and the gradient of the loss. Instead of directly calculating

the partial derivatives, we determine the change in the partial derivative
𝜕𝑎(𝑡)

𝜕𝑡
 by transitioning from

the discrete case to the continuous case to calculate that
𝜕𝑎(𝑡)

𝜕𝑡
= −𝑎(𝑡)

𝜕𝑔(𝑦(𝑡),𝑡,𝜃)

𝜕𝑦(𝑡)
.

An augmented ODE is derived to calculate the gradients of loss function with respect to 𝑡

and 𝜃 as follow:

𝑑

𝑑𝑡
[

𝑦
𝜃
𝑡
] (𝑡) = 𝑔𝑎𝑢𝑔([𝑦, 𝜃, 𝑡]) = [

𝑔([𝑦, 𝜃, 𝑡])

0
1

].

This augmented state’s adjoint state associated is described as:

𝑎𝑎𝑢𝑔 = [

𝑎𝑦

𝑎𝜃

𝑎𝑡

] , 𝑎𝑦 =
𝜕𝐿

𝜕𝑦(𝑡)
, 𝑎𝜃 =

𝜕𝐿

𝜕𝜃(𝑡)
, 𝑎𝑡 =

𝜕𝐿

𝜕𝑡(𝑡)
.

The gradients of the augmented state are as follows:

𝜕𝑔𝑎𝑢𝑔([𝑦, 𝜃, 𝑡])

𝜕[𝑦(𝑡) 𝜃(𝑡) 𝑡(𝑡)]
= [

𝜕𝑔

𝜕𝑦(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
0 0 0
0 0 0

].

The adjoint state that holds to all variables in the differential equations is expressed as follows:

𝑑𝑎(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
[𝑎𝑦(𝑡) 𝑎𝜃(𝑡) 𝑎𝑡(𝑡)] = − [𝑎𝑦(𝑡)

𝜕𝑔

𝜕𝑦(𝑡)
𝑎𝜃(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)
𝑎𝑡(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
].

Solving initial value problem of this adjoint augmented ODE, the gradients of the loss function with

respect to 𝑦, 𝜃, and 𝑡 can be obtained as follows:

𝜕𝐿

𝜕𝑦(𝑡0)
= 𝑎𝑦(𝑡1) + ∫ 𝑎𝑦(𝑡)

𝜕𝑔

𝜕𝑦(𝑡)
𝑑𝑡

𝑡0

𝑡1

,

𝜕𝐿

𝜕𝜃(𝑡0)
= ∫ 𝑎𝜃(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)
𝑑𝑡

𝑡0

𝑡1

,

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 42

𝜕𝐿

𝜕𝑡(𝑡0)
= 𝑎𝑡(𝑡1) + ∫ 𝑎𝑡(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
𝑑𝑡

𝑡0

𝑡1

.

Runtime of Automatic Differentiation

The mathematical difficulty, network size, and implementation efficiency all affect how quickly AD

runs while computing numerical derivatives. There are graph computations, forward and reverse

mode differentiation, and optimization techniques used, with the length of passes depending on the

complexity of the operation and the size of the graph.

Runtime of Operations and their Complexity

TensorFlow was used to examine the runtime of addition and square root operations in AD. By

taking into account the difficulty of the operations and the quantity of arithmetic operations involved,

it is possible to mathematically explain the observed disparity, where the square root operation

looked quicker than addition. When compared to addition, the square root operation often has a

lower complexity, which may be represented as 𝑂(𝑔(𝑥)) since it just calls for simple mathematical

operations and is unaffected by the size of the integers involved. Contrarily, addition is written as

𝑂(1) because, regardless of the numbers being added, it just calls for a simple arithmetic operation.

As a result, calculating the square root operation within a loop frequently requires less time than

adding, resulting in a reduced runtime.

Derivatives in computational statistics play a key part in this investigation of the runtime

differences between addition and square root operations in AD [14]. It highlights the simplicity of

mathematical procedures and their independence from the magnitude of numbers in square root

computations, providing a mathematical justification for why the square root operation is typically

computationally cheaper than addition.

Comparison of Runtime Between Symbolic Differentiation and Automatic Differentiation

The derivative of the function 𝑦 = 𝑥1
2 + 𝑥1𝑥2 is calculated in order to compare the runtimes of

symbolic differentiation with AD. In symbolic differentiation, the derivative is obtained by

differentiating each term independently and then using the product rule. The derivative is calculated

as 11 when the values of final statement is 𝑥1 = 4 and 𝑥2 = 3.

On the other hand, the derivative is computed numerically using AD, more especially reverse

mode AD. The derivative is determined by evaluating the derivatives at particular nodes in the

computational graph of the function, yielding
𝜕𝑦

𝜕𝑥1
= �̅� = 𝑐̅

𝜕𝑐

𝜕𝑎
+ �̅�

𝜕𝑑

𝜕𝑎
 in Figure 4. When the given values

are substituted, the result, which was achieved without symbolic manipulation, similarly produces a

derivative of solution, which is 11. Figure 4 illustrates the computational graph of function 𝑦 = 𝑥1
2 +

 𝑥1𝑥2 via reverse mode differentiation at 𝑥1 = 4 and 𝑥2 = 3.

Figure 4 Computational graph of function 𝑦 = 𝑥1
2 + 𝑥1𝑥2 via reverse mode

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 43

For computing derivatives, AD is quicker than symbolic differentiation in the code

implementation. It can be computationally expensive to manipulate and simplify algebraic equations

symbolically for symbolic differentiation, especially for complicated expressions. On the other hand,

AD does not require symbolic manipulation because it directly evaluates derivatives at certain nodes

in the computation network.

These findings are supported by the previous study, which highlights the advantages and

disadvantages of symbolic differentiation and AD [14]. It clarifies runtime variations and emphasizes

the value of thorough implementation and optimization in AD. These studies address the difficulties

and trade-offs associated with AD while advancing our understanding of efficient differentiation

techniques.

Conclusion

This study on AD contributes significantly to the knowledge in this field by exploring various aspects

of AD and its techniques. It highlights the use of dual numbers for simultaneous computation of

functions and their derivatives, provides implementation guidance for incorporating dual numbers

into AD frameworks, and discusses the forward mode differentiation for calculation. The study

extensively examines reverse mode differentiation, particularly in deep learning, and offers insights

into its computational benefits. It also addresses the computation of higher order derivatives, the use

of implicit models and efficient differentiation of fixed points, ODE in optimization, and the runtime

characteristics of AD. Future work can focus on improving AD efficiency, extending AD to higher

order derivatives, exploring the applications in deep learning, investigating alternative differentiation

techniques, and conducting real-world experiments to validate the proposed approaches.

Acknowledgement

I want to sincerely appreciate those who assisted me throughout the course of the project.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). TensorFlow: a
system for large-scale machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16) (pp. 265-283).

[2] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in

machine learning: a survey. Journal of Marchine Learning Research, 18, 1-43.

[3] Bettencourt, J., Johnson, M. J., & Duvenaud, D. (2019). Taylor-mode automatic differentiation for
higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS 2019.

[4] Bischof, C., Corliss, G., & Griewank, A. (1993). Structured second-and higher-order derivatives through
univariate Taylor series. Optimization Methods and Software, 2(3-4), 211-232.

[5] Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-López, F., ... & Vert, J. P. (2022).
Efficient and modular implicit differentiation. Advances in neural information processing systems, 35,
5230-5242.

[6] Bogaers, A. E., Kok, S., Reddy, B. D., & Franz, T. (2014). Quasi-Newton methods for implicit black-box
FSI coupling. Computer Methods in Applied Mechanics and Engineering, 279, 113-132.

[7] Campbell, S. L., & Hollenbeck, R. (1996). Automatic differentiation and implicit differential equations.
Computational Differentiation: Techniques, Applications, and Tools, 215-227.

[8] Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential
equations. Advances in neural information processing systems, 31.

[9] Dennis Jr, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and

nonlinear equations. Society for Industrial and Applied Mathematics.

[10] El Ghaoui, L., Gu, F., Travacca, B., Askari, A., & Tsai, A. (2021). Implicit deep learning. SIAM Journal on

Desmond Lee Ching Yiing, Yeak Su Hoe (2023) Proc. Sci. Math. 15: 34-44

 44

Mathematics of Data Science, 3(3), 930-958.

[11] Frostig, R., Johnson, M. J., Maclaurin, D., Paszke, A., & Radul, A. (2021). Decomposing reverse-mode
automatic differentiation. arXiv preprint arXiv:2105.09469.

[12] Griewank, A., & Walther, A. (2008). Evaluating Derivatives. SIAM.

[13] Heaton, H., Wu Fung, S., Gibali, A., & Yin, W. (2021). Feasibility-based fixed point networks. Fixed Point
Theory and Algorithms for Sciences and Engineering, 2021(1), 1-19.

[14] Margossian, C. C. (2019). A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4), e1305.

[15] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.
and Lerer, A. (2017). Automatic differentiation in pytorch.

