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Abstract 
This study examines the use of Automatic Differentiation (AD) in various applications, such as 
machine learning and numerical methods. It explores problems and applications related to AD, 
methods for enhancing differentiation, and mathematical implementations. PyCharm, a Python 
programming tool, is utilized to facilitate the mathematical implementation process. Dual numbers, 
implemented through classes and methods, are used as a method of AD, allowing for simultaneous 
evaluation of functions and their derivatives. Forward mode differentiation is employed to construct 
the Jacobian matrix of functions with inputs and outputs, while reverse mode differentiation, also 
known as backpropagation, is used for computing gradients in deep learning problems with 
numerous input variables. The study showcases the effectiveness, efficiency, and simplicity of AD, 
including the representation of higher order derivatives through recursive computations. It discusses 
implicit deep-learning models constructed using iterative techniques like fixed-point iterations and 
compares them to Newton's method. Other topics covered include AD functions using numerical 
fixed points, computing derivatives using the Implicit Function Theorem, and the transformation of 
AD using Jacobian-vector products (JVPs) and vector-Jacobian products (VJPs). The study also 
explores Neural Ordinary Differential Equations (ODEs) and reverse-mode differentiation across 
ODE solvers. Additionally, it provides an overview of the complexity of AD operations and compares 
the runtime of symbolic differentiation with AD. Overall, AD proves to be a powerful tool for 
computing gradients in parameter optimization and sensitivity analysis across a wide range of 
applications. Future research should focus on exploring new applications using existing libraries to 
fully harness the potential of AD in deep learning and other fields. 
Keywords: Automatic Differentiation; numerical techniques; Python; sensitivity analysis; parameter 
optimization  

 
Introduction 

This study focuses on the practical application of AD in various domains, specifically in deep 

learning and optimization. AD is a method widely used in machine learning frameworks like 

TensorFlow [1] and PyTorch [15] to compute derivatives of numerical functions. However, despite 

its name, AD is not completely automated and can lead to inefficient code if not used carefully. To 

address this, some refer to it as algorithmic differentiation. This study aims to highlight the 

principles, techniques, and mathematical implementation of AD, discussing its importance and 

efficiency in deep learning tasks. 

The study covers a range of topics, including dual numbers, forward mode differentiation, 

and reverse mode differentiation, with a focus on numerical approaches and solutions. It provides a 

Python program that demonstrates the functionality of these algorithms. Additionally, the study 

explores the relevance of AD in machine learning and identifies applicable scenarios. 

The significance of this study lies in its exploration of accurate AD implementation strategies 

that maintain mathematical precision. It also emphasizes the importance of readable and simple 

code implementation, crucial for practical applications. The study acknowledges that compiling time 

is not a major concern since AD programs are typically constructed once and used repeatedly for 

various computations in statistical applications. 

 

Dual Numbers 

One of AD approaches involves the use of dual numbers [2]. Assume the function 𝑔 be sufficiently 
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smooth that it is differentiable sufficient number of times, and 𝜖 be a tiny infinitesimal parameter. 𝜖2 

becomes negligible, resulting in 𝑔(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥) + 𝜖2𝑔′′(𝑥) + ⋯. Assume an augmented 

object 𝑥 + 𝜖 be in the calculation of 𝑔, the gradients can be extracted from the coefficient of the 𝜖 

term. The operators for dual numbers are defined as:  

 

(𝑥 + 𝑎𝜖) + (𝑦 + 𝑏𝜖) = (𝑥 + 𝑦) + (𝑎 + 𝑏)𝜖 (addition), 

 

(𝑥 + 𝑎𝜖)(𝑦 + 𝑏𝜖) = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖 (multiplication), 

 

𝑥 + 𝑎𝜖

𝑦 + 𝑏𝜖
=

𝑥

𝑦
+ 𝜖 (

𝑎

𝑦
−

𝑏𝑥

𝑦2
) (division), 

 

𝑒𝑥+𝑎𝜖 = 𝑒𝑥 + 𝑎𝜖𝑒𝑥  (exponential Taylor expansions), 

 

sin(𝑥 + 𝑎𝜖) = sin(𝑥) + 𝑎𝜖 cos(𝑥) (trigonometric functions), 

 

(𝑥 + 𝑎𝜖)
1
2 = √𝑥 +

𝑎𝜖

2√𝑥
 (square root). 

 

where 𝜖2 = 0 is the fundamental property guiding these arithmetic operations. The square root can 

be calculated using the Newton formula rather than a polynomial approximation. Using the Newton 

formula, the fixed-point iteration of the function for finding the square root can be expressed as 

𝑥𝑖+1 =
1

2
(𝑥𝑖 +

𝑦

𝑥𝑖
) , 𝑖 = 0,1,2,⋯ , 𝑛. 

 
Forward Mode Differentiation 

Each node, denoted as 𝑣, corresponds to an intermediate computation in this function [2]. Figure 1 

illustrates the computational graph of the function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via forward mode. 

 

 

Figure 1 Computational graph of function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via forward mode 

 

In the view of Figure 1, assume the function 𝑔 be given by 𝑦 = 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2), 

the derivative 𝑔′ is evaluated at 𝑥1 = 2 and 𝑥2 = 3. Forward mode AD only requires tracking of the 

intermediary computations at each node. The following calculations are 𝑣1 = 2, 𝑣2 = 3, 𝑣3 = 6, 𝑣4 =

cos(3), and 𝑣5 ≈ 6.99. Using the dual trace and differentiating each equation, 𝑣 with respect to 𝑥2, 

the expressions are: 𝑣1̇ = 0, 𝑣2̇ = 1 𝑣3̇ = 2, 𝑣4̇ = −sin(3), and 𝑣5̇ ≈ 2.14. Thus, a derivative is 

assigned to each intermediate variable 𝑣𝑖 to determine 𝑣�̇� =
𝜕𝑣𝑖

𝜕𝑥2
.  

It is highlighted that the vector-valued functions 𝑔, represented as 𝑔:ℝ𝑛 → ℝ𝑚 can have 

multiple inputs 𝑚 and outputs 𝑛 [2]. The Jacobian matrix, denoted as 𝐽𝑔, captures the gradient 

relationships between the outputs 𝑚 and inputs 𝑛 as follows: 
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𝐽𝑔 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

, 

 

where 𝑦𝑚 represents the 𝑗𝑡ℎ output and 𝑥𝑛 represents the 𝑖𝑡ℎ input. In addition, forward mode AD 

offers a matrix-free approach for calculating Jacobian-vector products (JVPs) as follows: 

 

𝐽𝑔 ∙ 𝑣 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

[

𝑣1

⋮
𝑣𝑛

]. 

 

By initializing �̇� = 𝑣, JVPs can be directly computed in a single forward pass. If the function 𝑔 maps 

from ℝ𝑛 to ℝ, the directional derivative along a given vector 𝑣 can be obtained by taking a linear 

combination of the partial derivatives ∇𝑔. 𝑣, where the gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, ⋯ ,

𝜕𝑦

𝜕𝑥𝑛
], corresponding to 

a 1 × 𝑛 Jacobian matrix that is constructed column by column using forward mode in 𝑛 evaluations. 

 

Reverse Mode Differentiation 

The reverse mode differentiation is needed in cases where the number of input variables 𝑛 is much 

larger than the number of outputs 𝑚, which is often observed in deep learning tasks [2]. Reverse 

mode differentiation, also known as backpropagation, is the preferred approach for computing 

gradients. Assume the same function 𝑔 be 𝑦 = 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2). In primal trace, the 

values of the variable are unchanged.  

The dual trace in reverse mode AD is more complex compared to the forward mode. This 

complexity can be confusing initially because we are more familiar with the step-by-step application 

of the chain rule to propagate derivatives forward [9]. This confusion is suggested to arises partly 

due to the familiarity with the chain rule as a step-by-step process for propagating derivatives 

forward [12]. The chain rule can be expressed as 
𝜕𝑦𝑗

𝜕𝑣𝑖
=

𝜕𝑦𝑗

𝜕𝑣𝑘
∙
𝜕𝑣𝑘

𝜕𝑣𝑖
. However, the choice of 𝑣𝑘 is not 

arbitrary. 𝑣𝑘 would be the parent of 𝑣𝑖. If 𝑣𝑘 has multiple parents, the chain rule is summed up for 

each parent using multivariable chain rule, yielding 
𝜕𝑦𝑗

𝜕𝑣𝑖
= ∑

𝜕𝑦𝑗

𝜕𝑣𝑝
∙
𝜕𝑣𝑝

𝜕𝑣𝑖
𝑝𝜖𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖) . In this approach, each 

intermediate variable 𝑣𝑖 is accompanied by an adjoint value, denoted as �̅�𝑖 =
𝜕𝑦𝑗

𝜕𝑣𝑖
, representing the 

sensitively of a specific output 𝑦𝑗 with respect to the changes in the corresponding variables 𝑣𝑖, and 

it can be expressed in terms of the adjoint of parents as �̅�𝑖 = ∑ �̅�𝑝 ∙
𝜕𝑦𝑗

𝜕𝑣𝑖
𝑝 .  

Figure 2 illustrates the computational graph of the function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via 

reverse mode. 
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Figure 2 Computational graph of function 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) via reverse mode 

 

In the view of Figure 2, this recursive method begins at the output node 𝑦 and traverse 

adjoints back to the input nodes. In addition, 𝑣1 and 𝑣2 have 𝑣3 as a parent, the following 

calculations are �̅�5 = 1, �̅�4 = −1, �̅�3 = 1, �̅�2 = 2 − (−cos(3)) ≈ 2.14, and �̅�1 = 3. The reverse mode 

AD computes both 
𝜕𝑦

𝜕𝑥1
 and 

𝜕𝑦

𝜕𝑥2
 in the complete iteration. 

In the extreme case of a function 𝑔:ℝ𝑛 → ℝ, reverse mode only needs to be applied once to 

compute the entire gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, ⋯ ,

𝜕𝑦

𝜕𝑥𝑛
], while forward mode would require 𝑛 passes to 

achieve the same result. Similar to the matrix-free computation of JVPs using forward mode, the 

transposed JVPs can be evaluated by initializing the reverse pass with �̅� = 𝑣 as follows:  

 

𝐽𝑔
𝑇 ∙ 𝑣 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝑦1

𝜕𝑥𝑛

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

[

𝑣1

⋮
𝑣𝑚

]. 

 

Higher Order Derivatives 

In this study, the notation used to represent higher order derivatives often employs a more compact 

in Automatic Differentiation (AD) system supported by the previous study [3][4]. Generally, the 𝑛𝑡ℎ 

order derivative is formed by composing of the derivative 𝑛 − 1 times with itself, evaluated at 𝑔(𝑥). 

In order to highlight the 𝑛𝑡ℎ order derivative, parentheses are used to indicate that it is composition 

of the functions 
𝑑𝑛

𝑑𝑥𝑛 𝑔(𝑥).  

 

Computation of Higher Order Derivatives via Forward Mode 

Forward mode AD can be used to compute higher order derivatives. Figure 3 illustrates the 

computational graph of the function 𝑔(𝑥) = sin(𝑥3) using higher order derivatives via forward mode. 
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Figure 3 Computational graph of function 𝑔(𝑥) = sin(𝑥3) using higher order derivatives via 

forward mode 

 

In the view of Figure 3, assume the computation flows on the graph of the function 𝑔(𝑥) =

sin(𝑥3) be calculated using higher order derivatives. 𝑥 is denoted as input variable, 𝑎(𝑥) = 𝑥3 is the 

intermediate value or node, and 𝑏(𝑎) is another intermediate value or node obtained from sin(𝑎). At 

node 𝑎, the first derivative of function 𝑎(𝑥) with respect to 𝑥 is calculated using power rule, yielding 
𝑑

𝑑𝑥
𝑎(𝑥) = 3𝑥2. The derivative of first derivative is respect to 𝑥 is multiplied by the first derivative 

itself, resulting in 
𝑑2

𝑑𝑥2 𝑎(𝑥) = 6𝑥. Moving to node 𝑏, the derivatives with respect to 𝑥 is computed 

again. The derivative function for 𝑏(𝑎) with respect 𝑥 is expressed as 
𝑑

𝑑𝑎
𝑏(𝑎) ∙

𝑑

𝑑𝑥
𝑎(𝑥) by applying 

the chain rule. The derivative of 𝑏(𝑎) with respect to 𝑎 is calculated, yielding 
𝑑

𝑑𝑎
𝑏(𝑎) = cos(𝑥3). 

Substituting the expressions for  
𝑑

𝑑𝑎
𝑏(𝑎) and 

𝑑

𝑑𝑥
𝑎(𝑥) in 

𝑑

𝑑𝑥
𝑏(𝑎), we obtain 

𝑑

𝑑𝑥
𝑏(𝑎) = cos(𝑥3) ∙ 3𝑥2.  

The second derivative of 𝑏(𝑎) with respect to 𝑥 is expressed as 
𝑑

𝑑𝑎
𝑏(𝑎) ∙

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
𝑎(𝑥)) +

𝑑

𝑑𝑥
(

𝑑

𝑑𝑎
𝑏(𝑎)) ∙

𝑑

𝑑𝑥
𝑎(𝑥) by applying the product rule. The derivative 

𝑑

𝑑𝑥
(

𝑑

𝑑𝑥
𝑎(𝑥)) is calculated as 

𝑑2

𝑑𝑎2 𝑏(𝑎) ∙
𝑑

𝑑𝑥
𝑎(𝑥) using chain rule, where we obtain −sin(𝑥2) 3𝑥2. By substituting the calculated 

expressions for 
𝑑

𝑑𝑎
𝑏(𝑎), 

𝑑

𝑑𝑥
𝑎(𝑥), 

𝑑

𝑑𝑥
(

𝑑

𝑑𝑎
𝑏(𝑎)) and 

𝑑2

𝑑𝑎2 𝑏(𝑎) into 
𝑑2

𝑑𝑥2 𝑏(𝑎), we obtain the final 

expression for the second derivative as 
𝑑2

𝑑𝑥2 𝑏(𝑎) = cos(𝑥3) ∙ 6𝑥 − sin(𝑥3) ∙ 3𝑥2 ∙ 3𝑥2. 

 

Implicit Models 

Lower-precision math and iterative methods like fixed-point iterations can increase the efficiency of 

deep neural networks. Deep Equilibrium Models, which rely on repetitive processes to arrive at an 

equilibrium state, allow for more intricate representations. Implicit models provide benefits including 

innovative designs, robustness analysis, and interpretability while also making deep learning 

notation simpler [10]. 
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Fixed-Point Iteration 

The output of a neural network layer is determined using the fixed-point iteration approach, where 

the output 𝑦 is computed repeatedly as 𝑦 = tanh(𝜃𝑦 + 𝑥), starting with an initial guess of 𝑦 = 0. 

Until convergence, this iterative method updates 𝑦𝑖+1 depending on 𝑦𝑖 and the network parameters 

𝜃. This layer may be thought of as a straightforward recurrent network, with the hidden layer 𝑦 

operating on the input 𝑥. Despite having only one layer parameterized by 𝜃, it benefits from the 

recurrent application of the nonlinearity offered by the tanh activation function while having just one 

layer parameterized by 𝜃. This layer can be mathematically represented as an implicit layer, where 

𝑦𝑖+1 stands for the solution to a root-finding equation. A fixed-point equivalent form of the equation 

is created, with 𝑦 = 𝑔(𝑥, 𝑦) = tanh(𝜃𝑦 + 𝑥). Starting with an initial guess 𝑦0, the iteration process 

builds a sequence, updating 𝑦𝑖+1 depending on 𝑦𝑖 using the function 𝑔. The iteration keeps on 

going until the condition |𝑦𝑖+1 − 𝑦𝑖| < 𝜖, which 𝜖 is a tiny convergence tolerance, is met. 

In some cases, the values of 𝑦 might fluctuate without reaching a stable solution, and the 

behavior relies on the value of 𝜃. However, the loop comes to an end at 𝑦𝑖+1 = tanh(𝑥), reaching a 

fixed point when 𝜃 is zero. The use of fixed-point iteration and implicit models is supported by the 

previous study in deep learning [13] to emphasize the importance of regularization techniques in 

solving inverse problems and the integration of data-driven regularization and convex feasibility.  

 

Alternative Methods for Finding Root Using Newton’s Method 

The fixed-point iteration approach is contrasted with Newton's method, highlighting the latter's 

faster convergence in a recent study [7]. Newton’s method is a significantly faster approach for 

finding the solution to the function 𝑔(𝑦) = tanh(𝜃𝑦 + 𝑥).  Newton’s method continues the update 

until it finds a root 𝑔(𝑦) = 0 for the function 𝑔:ℝ𝑛 → ℝ𝑛. The updated equation for Newton’s 

Method’s is expressed as 𝑦𝑖+1 = 𝑦𝑖 − (
𝜕𝑔𝑖

𝜕𝑦𝑖
)

−1

𝑔(𝑦𝑖), 𝑖 = 0,1,2,⋯ , 𝑛, where 
𝜕𝑔𝑖

𝜕𝑦𝑖
= 𝐼 −

𝑑𝑖𝑎𝑔(sech2(𝜃𝑟𝑖
𝑦𝑖 + 𝑥))𝜃𝑖, which is Jacobian of 𝑔 with respect to 𝑦.  

However, it is much complex compared to the earlier fixed-point iteration technique. 

Although fewer iterations are required than in fixed-point iteration, each iteration takes considerably 

longer because a unique Jacobian matrix must be formed and inverted for each sample in the 

minibatch. It quickly becomes impractical to invert or even store these matrices as the hidden unit 

sizes grow, especially in convolutional networks. The recent study supports this study by providing 

an overview of implicit models, explaining the fixed-point iteration method, introducing an 

alternative method such as Newton's method, and discussing the challenges [6]. 

 

Efficient Differentiation of Fixed Points 

As shown in Deep Equilibrium models, numerical fixed points provide a technique to automate the 

differentiation of functions. Differentiation may be mechanized by solving fixed-point equations, 

which equal a function and its derivative. Deep equilibrium models iteratively update the input until 

convergence and use fixed points to determine the equilibrium state of a system. This method is 

beneficial for automating differentiation in numerous contexts, notably in the context of Deep 

Equilibrium models, since it does away with the necessity for human derivative computations. 

 

Implicit Function Theorem 

The derivative of a function 𝑔:ℝ𝑛 → ℝ𝑚 at a point 𝑥 ∈ ℝ𝑛 is denoted as 
𝜕𝑔

𝜕𝑥
: ℝ𝑛 → ℝ𝑚, where 

𝜕𝑔

𝜕𝑥
 is a 

linear function. This derivative function maps perturbations in the input space ℝ𝑛 to perturbations in 

the output space ℝ𝑚. The first-order Talyor series expansion of 𝑔 at point 𝑥 can be expressed as 

𝑔(𝑥 + 𝜐) = 𝑔(𝑥) +
𝜕𝑔

𝜕𝑥
∙ 𝜐 + Ο(‖𝜐‖2), where 𝜐 is perturbation vector in ℝ𝑛 and Ο(‖𝜐‖2) represents the 

asymptotic upper bound on the error or approximation.  
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When a system of nonlinear equations in terms of 𝑦 is parameterized by 𝑥, denoted as 

𝑔(𝑥, 𝑦) = 0, the nominal solution is represented by the point (𝑥0, 𝑦0). Jacobian of the solution 

mapping can be evaluated at the point (𝑥0, 𝑦0) using the derivative of 𝑔. By differentiating both 

sides of the equation with respect to 𝑥 and rearranging the equation, the Jacobian of the solution 

mapping can be expressed as 
𝜕𝑦0

𝜕𝑥0
= −(

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
.  

The proposed study addresses this issue by introducing automatic implicit differentiation, an 

efficient and modular approach that leverages AD and the implicit function theorem to differentiate 

optimization problems [5]. By allowing the user to define an optimality function directly in Python, 

the study enables the seamless integration of implicit differentiation with state-of-the-art solvers. 

 

Transformation Used in Automatic Differentiation 

Jacobian-vector products (JVPs) and vector-Jacobian products (VJPs) are the transformations 

used to facilitate AD of fixed-point solvers and implicit functions. In JVPs, the Jacobian matrix 
𝜕𝑔

𝜕𝑥
 of 

function 𝑔(𝑥): ℝ𝑛 → ℝ𝑚 can be computed. A mapping is defined as (𝑥, 𝑣) → (𝑔(𝑥),
𝜕𝑔

𝜕𝑥
∙ 𝑣), where 

parameters 𝑥 ∈ ℝ𝑛 and 𝑣 ∈ ℝ𝑛 is the right multiplication vector in JVPs. Similar to VJPs, it is 

defined as the mapping (𝑥, 𝑤) → (𝑔(𝑥), 𝑤𝑇 𝜕𝑔

𝜕𝑥
 ), where 𝑤 ∈ ℝ𝑚 is a dummy vector, such as a 

collection of the vector. Backpropagation is frequently used in reverse mode AD packages to 

compute the Jacobian matrix's left multiplication in VJPs.  

 Since the relationship between VJPs and the gradient of a scalar-valued function and the 

significance of gradient-based optimization, JVPs and VJPs facilitate function composition, which is 

a critical component of AD. The JVP of 𝑔 can be expressed by composing the JVPs of 𝑓 and ℎ 

when two functions, 𝑓 and ℎ, are composed to form 𝑔 = 𝑓 ∘ ℎ. Specifically, JVPs of 𝑓 can be 

defined as the mapping (𝑥, 𝑣) → (𝑓(𝑥),
𝜕𝑓

𝜕𝑥
∙ 𝑣), and the JVPs of ℎ can be defined as the mapping 

(𝑦, 𝑢) → (ℎ(𝑦),
𝜕ℎ

𝜕𝑦
∙ 𝑢), then the JVPs of 𝑔 can be derived as 𝑔(𝑥) + (

𝜕𝑓

𝜕ℎ
∙
𝜕ℎ

𝜕𝑦
) 𝑢. Similar to how the 

VJPs of 𝑓 and ℎ for the same composition 𝑔 = 𝑓 ∘ ℎ can be composed to get VJPs of 𝑔, indicated a 

∇𝑔. If the VJPs of 𝑓 can be defined as the mapping of  (𝑥, 𝑤) → (𝑓(𝑥), 𝑤𝑇 𝜕𝑓

𝜕𝑥
), and the VJPs of ℎ 

can be defined as the mapping  (𝑦, 𝑤) → (ℎ(𝑦), 𝑤𝑇 𝜕ℎ

𝜕𝑦
), then the VJP of 𝑔 can be determined as 

𝑤𝑇 𝜕𝑓

𝜕ℎ
+ (𝑤𝑇 𝜕𝑓

𝜕ℎ
)

𝜕ℎ

𝜕𝑦
. 

A past study proposed a decomposition of reverse-mode AD into linearization followed by 

transposition [11]. This approach highlights the key distinction between forward-mode and reverse-

mode AD and simplifies their joint implementation.  

 

Fixed Points of Transformation Used in Automatic Differentiation 

Both JVPs and VJPs play crucial roles in AD, enabling the computation of gradients and the linkage 

between Jacobians of functions and solution mappings. It involves finding a fixed-point solution 

mapping 𝑦 that satisfies the fixed-point equation for any given parameter 𝑥 ∈ ℝ𝑛, represented as 

𝑦(𝑥) = 𝑔(𝑥, 𝑦(𝑥)). At a certain point 𝑥0 with 𝑦0 = 𝑦(𝑥0), the derivative can be expressed as 
𝜕𝑦0

𝜕𝑥0
=

(𝐼 −
𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
, where 

𝜕𝑔0

𝜕𝑦0
 and 

𝜕𝑔0

𝜕𝑥0
 represent the Jacobians of the function 𝑔 evaluated at that point.  

This relationship connects the Jacobians of the function 𝑔 with the Jacobians of the solution 

mapping 𝑦 at that particular point. For the JVPs, the mapping (𝑥0, 𝑣) → (𝑔0,
𝜕𝑔0

𝜕𝑥0
∙ 𝑣) can be 

computed, yielding 
𝜕𝑦0

𝜕𝑥0
∙ 𝑣 = (𝐼 −

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
∙ 𝑣. For VJPs, the mapping (𝑥, 𝑤) → (𝑔(𝑥), 𝑤𝑇 𝜕𝑔

𝜕𝑥
 ) is 

computed, yielding 𝑤𝑇 𝜕𝑦0

𝜕𝑥0
= 𝑤𝑇 (𝐼 −

𝜕𝑔0

𝜕𝑦0
)

−1 𝜕𝑔0

𝜕𝑥0
 . 
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Neural Ordinary Differential Equations 

The primary challenge in training continuous-depth networks lies in conducting reverse-mode 

differentiation, also called backpropagation, across the Ordinary Differential Equation (ODE) solver. 

It scales linearly with the problem size, requires minimal memory, and handles numerical 

inaccuracies efficiently [8].  

The optimization of a loss function, which is a scalar value is the input to the ODE solver, 

denoted as: 

𝐿(𝑦(𝑡)) = 𝐿 (𝑦(𝑡0) + ∫ 𝑔(𝑦, 𝑡, 𝜃)𝑑𝑡
𝑡

𝑡0

), 

 

where 𝑦 is a vector and 𝜃 is the parameter for the function. In order to compute the gradients with 

respect to 𝜃 to optimize 𝐿, The adjoint is denoted as 𝑎(𝑡) =
𝜕𝐿

𝜕𝑦(𝑡)
 is to find the connection between 

each moment of the hidden state 𝑦(𝑡) and the gradient of the loss. Instead of directly calculating 

the partial derivatives, we determine the change in the partial derivative 
𝜕𝑎(𝑡)

𝜕𝑡
 by transitioning from 

the discrete case to the continuous case to calculate that 
𝜕𝑎(𝑡)

𝜕𝑡
= −𝑎(𝑡)

𝜕𝑔(𝑦(𝑡),𝑡,𝜃)

𝜕𝑦(𝑡)
. 

An augmented ODE is derived to calculate the gradients of loss function with respect to 𝑡 

and 𝜃 as follow: 

 

𝑑

𝑑𝑡
[

𝑦
𝜃
𝑡
] (𝑡) = 𝑔𝑎𝑢𝑔([𝑦, 𝜃, 𝑡]) = [

𝑔([𝑦, 𝜃, 𝑡])

0
1

]. 

 

This augmented state’s adjoint state associated is described as: 

 

𝑎𝑎𝑢𝑔 = [

𝑎𝑦

𝑎𝜃

𝑎𝑡

] , 𝑎𝑦 =
𝜕𝐿

𝜕𝑦(𝑡)
, 𝑎𝜃 =

𝜕𝐿

𝜕𝜃(𝑡)
, 𝑎𝑡 =

𝜕𝐿

𝜕𝑡(𝑡)
. 

 

The gradients of the augmented state are as follows: 

 

𝜕𝑔𝑎𝑢𝑔([𝑦, 𝜃, 𝑡])

𝜕[𝑦(𝑡) 𝜃(𝑡) 𝑡(𝑡)]
= [

𝜕𝑔

𝜕𝑦(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
0 0 0
0 0 0

]. 

 

The adjoint state that holds to all variables in the differential equations is expressed as follows: 

 

𝑑𝑎(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
[𝑎𝑦(𝑡) 𝑎𝜃(𝑡) 𝑎𝑡(𝑡)] = − [𝑎𝑦(𝑡)

𝜕𝑔

𝜕𝑦(𝑡)
𝑎𝜃(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)
𝑎𝑡(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
]. 

 

Solving initial value problem of this adjoint augmented ODE, the gradients of the loss function with 

respect to 𝑦, 𝜃, and 𝑡 can be obtained as follows: 

 

𝜕𝐿

𝜕𝑦(𝑡0)
= 𝑎𝑦(𝑡1) + ∫ 𝑎𝑦(𝑡)

𝜕𝑔

𝜕𝑦(𝑡)
𝑑𝑡

𝑡0

𝑡1

, 

 

𝜕𝐿

𝜕𝜃(𝑡0)
= ∫ 𝑎𝜃(𝑡)

𝜕𝑔

𝜕𝜃(𝑡)
𝑑𝑡

𝑡0

𝑡1

, 
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𝜕𝐿

𝜕𝑡(𝑡0)
= 𝑎𝑡(𝑡1) + ∫ 𝑎𝑡(𝑡)

𝜕𝑔

𝜕𝑡(𝑡)
𝑑𝑡

𝑡0

𝑡1

. 

 

Runtime of Automatic Differentiation 

The mathematical difficulty, network size, and implementation efficiency all affect how quickly AD 

runs while computing numerical derivatives. There are graph computations, forward and reverse 

mode differentiation, and optimization techniques used, with the length of passes depending on the 

complexity of the operation and the size of the graph.  

 

Runtime of Operations and their Complexity 

TensorFlow was used to examine the runtime of addition and square root operations in AD. By 

taking into account the difficulty of the operations and the quantity of arithmetic operations involved, 

it is possible to mathematically explain the observed disparity, where the square root operation 

looked quicker than addition. When compared to addition, the square root operation often has a 

lower complexity, which may be represented as 𝑂(𝑔(𝑥)) since it just calls for simple mathematical 

operations and is unaffected by the size of the integers involved. Contrarily, addition is written as 

𝑂(1) because, regardless of the numbers being added, it just calls for a simple arithmetic operation. 

As a result, calculating the square root operation within a loop frequently requires less time than 

adding, resulting in a reduced runtime. 

Derivatives in computational statistics play a key part in this investigation of the runtime 

differences between addition and square root operations in AD [14]. It highlights the simplicity of 

mathematical procedures and their independence from the magnitude of numbers in square root 

computations, providing a mathematical justification for why the square root operation is typically 

computationally cheaper than addition. 

 

Comparison of Runtime Between Symbolic Differentiation and Automatic Differentiation 

The derivative of the function 𝑦 = 𝑥1
2 + 𝑥1𝑥2 is calculated in order to compare the runtimes of 

symbolic differentiation with AD. In symbolic differentiation, the derivative is obtained by 

differentiating each term independently and then using the product rule. The derivative is calculated 

as 11 when the values of final statement is 𝑥1 = 4 and 𝑥2 =  3. 

On the other hand, the derivative is computed numerically using AD, more especially reverse 

mode AD. The derivative is determined by evaluating the derivatives at particular nodes in the 

computational graph of the function, yielding 
𝜕𝑦

𝜕𝑥1
= �̅� = 𝑐̅

𝜕𝑐

𝜕𝑎
+ �̅�

𝜕𝑑

𝜕𝑎
 in Figure 4. When the given values 

are substituted, the result, which was achieved without symbolic manipulation, similarly produces a 

derivative of solution, which is 11. Figure 4 illustrates the computational graph of function 𝑦 = 𝑥1
2 +

 𝑥1𝑥2 via reverse mode differentiation at 𝑥1 = 4 and 𝑥2 =  3. 

 

 

Figure 4 Computational graph of function 𝑦 = 𝑥1
2 + 𝑥1𝑥2 via reverse mode  
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For computing derivatives, AD is quicker than symbolic differentiation in the code 

implementation. It can be computationally expensive to manipulate and simplify algebraic equations 

symbolically for symbolic differentiation, especially for complicated expressions. On the other hand, 

AD does not require symbolic manipulation because it directly evaluates derivatives at certain nodes 

in the computation network.  

These findings are supported by the previous study, which highlights the advantages and 

disadvantages of symbolic differentiation and AD [14]. It clarifies runtime variations and emphasizes 

the value of thorough implementation and optimization in AD. These studies address the difficulties 

and trade-offs associated with AD while advancing our understanding of efficient differentiation 

techniques. 

 

Conclusion 

This study on AD contributes significantly to the knowledge in this field by exploring various aspects 

of AD and its techniques. It highlights the use of dual numbers for simultaneous computation of 

functions and their derivatives, provides implementation guidance for incorporating dual numbers 

into AD frameworks, and discusses the forward mode differentiation for calculation. The study 

extensively examines reverse mode differentiation, particularly in deep learning, and offers insights 

into its computational benefits. It also addresses the computation of higher order derivatives, the use 

of implicit models and efficient differentiation of fixed points, ODE in optimization, and the runtime 

characteristics of AD. Future work can focus on improving AD efficiency, extending AD to higher 

order derivatives, exploring the applications in deep learning, investigating alternative differentiation 

techniques, and conducting real-world experiments to validate the proposed approaches. 
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