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Abstract  
Portfolio optimization employs mathematical models and algorithms to aid investors in making informed 
investment decisions and achieving the ideal asset allocation within their portfolio. Its main objective is 
to either maximize returns or minimize risks by assigning appropriate weights to different assets based 
on specific risk appetite and expected returns. This particular study endeavors to utilize Particle Swarm 
Optimization (PSO) to determine the Sharpe ratio and the optimal weights for a given portfolio. The 
Sharpe ratio serves as a measure of risk-adjusted return for the portfolio. The portfolio under 
consideration consists of 20 exchange-traded funds (ETFs) from various sectors listed on the New York 
Stock Exchange (NYSE). Historical prices of these 20 ETFs spanning from January 2018 to December 
2021 will be gathered. The implementation of the particle swarm optimization algorithm will be 
conducted using Python version 3.11.3. The obtained results provide evidence of the effectiveness of 
PSO in optimizing portfolios. 
 
Keywords: Particle swarm optimization (PSO); Portfolio optimization (PO); Exchange-traded funds 
(ETFs); New York Stock Exchange (NYSE) 
 
 
1. Introduction  
 
Portfolio optimization is a complex subject in the financial world and has troubled many investors and 
even industry professionals. As the topic of portfolios has become more and more popular, various 
portfolio methods and model calculations have emerged, while how to obtain the optimal solution for a 
portfolio has become a subject of interest to many. In the selection process, investors will invest 
according to their own risk tolerance and preferences. There are also investors who value funds based 
on their past performance and assess future performance.  

 
In portfolio optimization, the proportion of each stock in the portfolio needed to determine based 

on capital to minimise risk and maximise return. Harry Markowitz, a Nobel Prize-winning American 
economist, is renowned for creating Modern Portfolio Theory, which enables investors to select their 
preferred level of risk-taking to maximize their returns. Markowitz's theory emphasizes the importance 
of purchasing low-correlated stocks for diversification of risks to form an optimal portfolio. 

 
In 1952, Harry Markowitz used mathematical programming and variance to evaluate portfolio, 

mean and return, portfolio selection by optimizing two conflicting criteria of risk and return. His 
mathematical modelling was a long way from the real world, but it had a profound effect on improving 
the portfolio selection procedure, with many researchers thereafter refining his theory, but so far, a 
comprehensive model that investors can choose for the optimal portfolio of investments, to use it has 
not been introduced. The Markowitz model had two important drawbacks. First, its risk assessment 
criterion was not a suitable criterion for portfolio risk assessment, and second, the model was not 
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appropriate for the long-term horizon. On the other hand, the issue of portfolio selection in the real world 
involves transaction costs or at least the number of transactions that make it a complex mathematical 
problem.  

 
After averaging the variance models, the researchers focused on other models such as discrete-

time models, continuous-time models, and random programming models. Each of these methods has 
its disadvantages and advantages that can be selected according to the investor decision making 
conditions. Continuous and discrete multi-period models are solved by dynamic scheduling and optimal 
control methods. Due to the large dimensions of the optimal portfolio selection problem, the men- 
Overview of Portfolio Optimization Advances in Mathematical Finance and Applications mentioned 
models face serious challenges. This report introduces the use of the Particle Swarm Optimization 
(PSO) approach to obtain portfolio optimization. 
 
2. Scope of the Research 
 
According to the Statista Research Department’s May 2022 survey, there will be 8,522 ETFs worldwide 
in 2021. Besides that, ETFs worldwide managed assets up to more than 10 trillion U.S. dollars in 2021. 
Although there are over 8,000 ETFs worldwide, only 20 of them were selected for study in this research. 
In this research, the time of study is 5 year that is 1008 days, usually there are only 252 days of available 
data in a year due to there are 113 days when the stock market is closed because of the weekends and 
public holidays but this is not a certainty. 
 
2.1 New York Stock Exchange (NYSE) 
 
NYSE is one of the largest stock exchanges in the world and the first officially established stock 
exchange in the United States. The Market Identification Code (MIC) of this exchange is XNYS. It is a 
globally recognized stock exchange that provides a platform for investors to buy and sell stocks and 
other financial products. It is headquartered on Wall Street in New York City, USA, and is a free market 
institution that provides a venue for open market trading and related services. NYSE was founded in 
1792 when 24 stockbrokers held a meeting under a buttonwood tree held a meeting where they entered 
into the Buttonwood Agreement and established a set of rules for organized securities trading in New 
York. Prior to this agreement, securities were sold through auctions rather than on an organized market.  

 
On 16 November 2005, the Intercontinental Exchange (ICE) was listed on the NYSE. 2006 saw 

the merger of the NYSE, Archipelago (Arca), and Pacific Exchange (PCX) to form the publicly traded 
NYSE Group. 2008 saw the NYSE acquired the American Stock Exchange and became the third largest 
options market in the United States. By 2013, the Intercontinental Exchange (ICE) acquired the NYSE 
which remains the parent company of the exchange today. 
 
2.2 Exchange-Traded Funds (ETFs) 
 
ETFs have emerged from their fledgling beginnings in 1993 to a full-blown revolution in the mutual fund 
industry. The number of ETFs offerings increase by the hundreds each year. ETF is an investment tool 
designed to track the performance of a specific index, sector, commodity, bond or other portfolio of 
assets. an ETF is a fund that holds a variety of underlying assets, rather than just one, as is the case 
with stocks. ETFs consist of a basket of stocks, bonds, futures or commodities based on an index, 
providing immediate broad diversification and avoiding the risks involved in holding a single company's 
stock. the liquidity of an ETF reflects the liquidity of the underlying basket of stocks. There are several 
types of ETFs in general, including equity ETFs, leveraged and inverse ETFs, stock ETFs, sector ETFs, 
bond ETFs, and commodity ETFs. 

 
ETFs typically have lower management fees compared to traditional mutual funds. In addition, 

because they can be traded through an exchange, investors can take advantage of market prices to 
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buy or sell without having to pay front-end or back-end sales charges. ETF trading is more transparent, 
and investors can know exactly what stocks or underlying assets are held in an ETF by visiting the 
ETF's website or the ETF's announcement on the exchange's website. 

  
ETFs offer a convenient and flexible way to invest, providing broad asset diversification while 

offering good liquidity and low transaction costs. Investors can participate in a variety of market 
opportunities by selecting the right ETF based on their investment objectives and preferences. 
 
2.3 Portfolio Optimization (PO) 
 
Portfolio optimization is a mathematical approach involving mathematical models, and algorithms for 
optimization to help investors make investment decisions in a range of financial instruments and to find 
the optimal allocation of assets in a portfolio. The objective is to maximize the return or minimize the 
risk of a portfolio by rationally allocating the weights of different assets given a certain risk preference 
and expected return.  

 
Portfolio optimization begins with determining which investment assets to invest in, such as 

stocks, bonds, exchange-traded funds, mutual funds, or other financial instruments. Each asset is 
associated with a certain level of expected return and risk. Expected return represents the average 
return an investor can expect from holding the asset, while risk measures the uncertainty associated or 
volatility with the asset's return. 

 
Portfolio optimization requires considering the risks and expected returns of assets and their 

relative potential correlation. Portfolio optimization can be achieved by combining assets with diverse 
risk and return characteristics to create a portfolio that provides the best trade-off between risk and 
return which is optimal portfolio. An optimal portfolio is considered to have the highest Sharpe ratio 
which measures the expected return generated per unit of risk. 
 
2.4 Modern Portfolio Theory (MPT) 
 
Portfolio optimization is based on Modern Portfolio Theory (MPT). The foundation for MPT was 
established in 1952 by Harry Markowitz with the writing of his doctoral dissertation in statistics. It is a 
theoretical framework for portfolio construction and asset allocation, by combining a variety of assets 
with different risk and return profiles, the overall portfolio risk can be effectively reduced while increasing 
the expected return. Here it will introduce the efficient frontier, which is a curve consisting of various 
combinations of assets with different risk and return profiles, which represents the optimal portfolio that 
can be achieved for a given level of risk. Investors can choose a suitable portfolio on the efficient frontier 
according to their risk tolerance and investment objectives. 

 
In a nutshell, the goal of MPT is to help investors find their own optimal portfolio based on their 

risk tolerance level. However, there are some limitations of MPT exist, such as the level of rationality of 
investors towards the market. So investors should combine other methods to make investment 
decisions. 
 
2.5 Particle Swarm Optimization (PSO) 
 
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm and was first proposed by Kennedy 
and Eberhart. Later developed by an electronic engineer and a social psychologist. The idea was 
inspired by the habits of group animals, such as the flight of birds in groups and the swimming of fish in 
groups. Like any other meta-simulation method, this algorithm begins with the creation of an initial 
random population, here called a group of particles. The properties of each particle in the group are 
determined based on a set of parameters that must determine their optimal values. In this way, each 
particle would represent a point in the solution space of the problem. Each particle has a memory, 
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meaning it remembers the best position that it can find in the search space. Each particle then goes in 
two directions, first to its best possible location and secondly to the best possible place for all particles 
combined. As a result, under this strategy, each particle's change in location in the search area will be 
impacted by both its neighbours and its own experience and knowledge. 

 
PSO does not require derivative information and is relatively easy to implement. It has been 

widely applied in various fields, including engineering, economics, finance, and data analysis, to solve 
optimization problems such as parameter tuning, feature selection, and portfolio optimization. Overall, 
Particle Swarm Optimization is a heuristic optimization algorithm that mimics the social behaviour of 
particles to iteratively search for the optimal solution within a given search space. Its simplicity and 
effectiveness make it a popular choice for solving a wide range of optimization problems. 
 
3. Data 
 
In this research, the portfolio is composed of different ETFs listed on the New York Stock Exchange. 
There are various ETFs in the market, and the ETFs used in this research are from the Sectors ETFs.  
This research will introduce the Global Industry Classification Standard (GICS), which was developed 
by S&P Dow Jones Indices in conjunction with Morgan Stanley Capital International (MSCI) in 1999. 
GICS is a framework for industry analysis. It provides a standard and consistent industry definition for 
global finance. The GICS standard classifies companies in the global marketplace into multiple levels 
of industries and sub-industries to help investors better understand the business characteristics, 
competitive market environment, and risk characteristics of companies.  

 
The GICS industry classification structure is made up of 11 sectors, 25 industry groups, 74 

industries, and 163 sub-industries. These 11 sectors are energy, materials, industrials, consumer 
discretionary, consumer staples, health care, financial, information technology, communication services, 
utilities, and real estate. The GICS methodology has been recognized as the industry analysis 
framework for investment research, portfolio management, and asset allocation. Its globally accepted 
industry approach enhances the transparency and efficiency of the investment process. 

 
This portfolio has total 20 ETFs all from the GICS industry classification structure which are 

Vanguard Information Technology Index Fund ETF Shares (VGT), iShares Expanded Tech-Software 
Sector ETF (IGV), Financial Select Sector SPDR Fund (XLF), SPDR S&P Insurance ETF (KIE), SPDR 
S&P Biotech ETF (XBI), iShares U.S. Medical Devices ETF (IHI), Consumer Discretionary Select Sector 
SPDR Fund (XLY), iShares U.S. Home Construction ETF (ITB), iShares Transportation Average ETF 
(IYT), Industrial Select Sector SPDR Fund (XLI), Vanguard Communication Services Index Fund ETF 
Shares (VOX), Consumer Staples Select Sector SPDR Fund (XLP), Energy Select Sector SPDR Fund 
(XLE), United States Oil Fund (USO), VanEck Oil Services ETF (OIH), Vanguard Real Estate Index 
Fund ETF Shares (VNQ), Materials Select Sector SPDR Fund (XLB), VanEck Gold Miners ETF (GDX), 
Invesco MSCI Global Timber ETF (CUT), and Utilities Select Sector SPDR Fund (XLU). 

 
Those data are come from Yahoo Finance and www.investing.com website, adjusted price per 

Exchange Traded fund at close of market on the day. This research will use the adjusted prices of these 
ETFs from 2 January 2018 to 31 December 2021, for a total of 1008 days. 
 
4. Results and Discussion 
 
4.1 Adjusted Price 
 
The closing price is the final price at which a stock or any other specific type of security traded during 
the market session on that trading day. The adjusted price of a stock refers to the price of the stock after 
it has been adjusted for certain events or factors, such as stock splits, dividends, or stock distributions. 
These adjustments are made to reflect the true value of the stock and to ensure that historical price 
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comparisons are accurate. The adjusted closing price makes it extremely convenient to make a full 
evaluation of a stock's price. Investors can quickly estimate the value they will obtain from a specific 
stock. 
 
4.2 Risk Free Rate 
 
The risk-free rate refers to the hypothetical rate of return on an investment that carries no risk. The risk-
free rate is only a theoretical concept, this is because all investments carry some degree of risk. For 
business valuation, many return models assume the presence of a "risk-free rate". The exact value of 
the risk-free rate can vary over time and from nation to nation or region to region. Usually, government 
bonds or treasury bills that have been issued by stable and creditworthy governments are risk-free 
investments. The interest rates offered by these government securities are often used as an estimate 
of the risk-free rate. The probability of failure on such bond issues is virtually zero due to the central 
government guarantee. As a result, government bonds are considered the safest investment asset class 
in which investors can invest their money. 
 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙	𝑅𝑖𝑠𝑘	𝐹𝑟𝑒𝑒	𝑅𝑎𝑡𝑒	 = 	 !"#$%&	#()*	+,$$	#%-$
!"./0&%-(1/	#%-$

                                          (1) 

 
𝑅𝑒𝑎𝑙	𝑅𝑖𝑠𝑘	𝐹𝑟𝑒𝑒	𝑅𝑎𝑡𝑒	 = 	 !"213(/%&	#()*	+,$$	#%-$

!"./0&%-(1/	#%-$
                                            (2) 

 
In this research, 5-year Treasury Bill Rate of United State will be taken as free-risk rate which is 3.92%. 
 
4.3 Sharpe Ratio Model 
 
The Sharpe Ratio combines the information from mean and variance of an asset. It is quite simple, and 
it is a risk-adjusted measure of mean return, which is often used to evaluate the performance of a 
portfolio. It is described with the following equation: 

 

																																	𝑆ℎ𝑎𝑟𝑝𝑒	𝑅𝑎𝑡𝑖𝑜	 = 	
𝑅4 	−	R0

σ4
																																																																										(3) 

 
where 𝑝 is the portfolio, 𝑅4 is the mean return of the portfolio, 𝑅0 is the test available rate of return of a 
risk-free security. σ4	is the standard deviation of portfolio’s excess return, in other words, it is a measure 
of risk of the portfolio. Adjusting the portfolio weights 𝑤(, we can maximize the portfolio Sharpe Ratio in 
effect balancing the trade-off between maximizing the expected return and at the same time minimizing 
the risk. In this study, Sharpe Ratio is used in the PSO to find the most valuable portfolio with good 
ETFs combinations. 

 
4.4 Formulation of Portfolio Optimization 

 
Portfolio optimization was first developed by Markowitz (1952) in modern portfolio theory. The theory 
presents the efficient frontier, which illustrates various combinations of maximum portfolio return given 
each level of risk, or minimum portfolio risk for each return level. With variance (or standard deviation) 
as a risk measure, portfolio returns, and risk are calculated after considering the correlation between 
assets' returns. Based on the variance-return framework, the optimization process is obtained by 
changing combinations of assets with the objective function to maximize the portfolio returns or to 
minimize the portfolio risk. 

 
The minimization objective is described as follows: 
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subject to: 
 

																																																									8𝑥(

/
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= 1,																																																																																																				(5) 

 

																																																									8𝑟(

/

(5!

𝑥( =	𝑟4,																																																																																													(6) 

 
0	 ≤ 	𝑥( .		𝑖	 = 1, 2, … , 𝑛 

 
where 𝑥( 	are asset weights, 𝑟( is the assets' rate of return, and σ(* is the covariance between returns on 
assets	𝑖 and 𝑘. Total weights of assets are 100 percent while the weight for any individual asset cannot 
be negative, and the weighted average expected return of the portfolio equals a predetermined level 𝑟4. 
 
4.5 Particle Swarm Optimization Algorithm (PSO) 
 
In Particle Swarm Optimization Algorithm (PSO), a population of potential solutions, called particles, 
move through the search space to find the optimal solution. Each particle represents a potential solution 
to the optimization problem and has a position and velocity. The position of a particle corresponds to a 
potential solution, and the velocity determines the direction and speed of its movement through the 
search space. The behaviour of particles in PSO is influenced by their own best-known position 
(personal best) and the best-known position among all particles in the population (global best). The 
personal best represents the best solution found by an individual particle so far, while the global best 
represents the best solution found by any particle in the population. 

 
During each iteration of the algorithm, particles adjust their velocities based on their personal and 

global best positions. By doing so, particles are attracted toward the global best position while exploring 
the search space. This balance between exploitation (moving towards the best-known solution) and 
exploration (searching for new solutions) helps the algorithm converge toward an optimal solution. Each 
particle 𝑖 can be represented with three vectors 𝑣(6 . current position 𝑋( =	 (𝑥(!, 𝑥(7, . . . , 𝑥(8), particle’s 
optimal position, i.e., previous best position 𝑃( =	 (𝑝(!, 𝑝(7, . . . , 𝑝(8) , and velocity 𝑉( 	= 	 (𝑣(7, 𝑣(7, . . . , 𝑣(8) ; 
the optimal swarm position, global best position 𝑔9$)- 	= 	 (𝑔!, 𝑔7, . . . , 𝑔8) is known to all m particles. For 
iteration 𝑡	 + 	1 , velocity and position coordinates of each particle are updated as given in Eq. (1) and 
(2), in order to restrict the particle velocity within a defined boundary, 𝑉3(/	and 𝑉3%: are defined as the 
minimum and maximum allowable velocities, respectively. An iteration of PSO-based particle movement 
has been demonstrated in Figure 1. 
 

𝑣( 	= 	ω ∗ 𝑣( 	+ 𝑐! ∗ 𝑟𝑎𝑛𝑑	() ∗ (𝑝𝑏𝑒𝑠𝑡( 	–	𝑥() + 𝑐7 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑔𝑏𝑒𝑠𝑡( 	–	𝑥()																					(7)   

																																																												𝑥( 	= 	 𝑥( 	+ 𝑣( 																																																																																								(8) 

where, ω is the inertia weight; 𝑐! and 𝑐7 present acceleration constants;	𝑟𝑎𝑛𝑑()	generates a random 
value within the interval [0, 1]; the velocity ranges within [	𝑣3(/	, 𝑣3%:	]. 
 
Flow of Standard PSO Algorithm 

1. Initialize a group of particles (group size is N), including random position and velocity; 
2. Evaluate the fitness of each particle; 
3. For each particle, compare its fitness value with the best position 𝑝𝑏𝑒𝑠𝑡 it passes through, and 

if it is better, take it as the current best position 𝑝𝑏𝑒𝑠𝑡; 
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4. For each particle, compare its fitness value with the best position 𝑔𝑏𝑒𝑠𝑡 it passes through, and 
if it is better, take it as the current best position 𝑔𝑏𝑒𝑠𝑡; 

5. Adjust particle velocity and position according to formulas (2) and (3); 
6. If the end condition is not met, go to step (2). 

 

 
Figure 1 The flowchart depicting the general algorithm of PSO. 

 
4.6 Optimize Portfolio using PSO Algorithm 
 
The following is one of the formulas of the PSO algorithm： 
 

		𝑣( 	= 	ω ∗ 𝑣( 	+ 𝑐! ∗ 𝑟𝑎𝑛𝑑	() ∗ (𝑝𝑏𝑒𝑠𝑡(	–	𝑥() + 𝑐7 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑔𝑏𝑒𝑠𝑡( 	–	𝑥()																									(9) 
 

Since the parameters ω, 𝑐!, and 𝑐7 are widely discussed, it will be assumed in this research that 
𝑐! = 𝑐7 = 1. Inertia weight, ω is to manipulate the direction of the particles on the future displacement. 
Generally, the value of ω is between 0 and 1. To test what ω is, 0.1, 0.3, 0.5, 0.7, and 0.9 will be chosen 
to find the difference and select the most suitable ω for the following portfolio optimization. Both number 
of iteration and the number of particles generated in this portfolio is 100. The sum of weights is equal 
to 1. 

 
 

Table 1: The result of different inertia weight 
 

FUND 𝛚 = 𝟎. 𝟏 𝛚 = 𝟎. 𝟑 𝛚 = 𝟎. 𝟓 𝛚 = 𝟎. 𝟕 𝛚 = 𝟎. 𝟗 
VGT 0.0937 0.2120 0.2498 0.9021 0.9950 
IGV 0.0998 0.1642 0.3666 0.0000 0.0000 
XLF 0.0515 0.0000 0.0000 0.0000 0.0000 
KIE 0.0990 0.0000 0.0000 0.0000 0.0000 
XBI 0.1004 0.0000 0.0000 0.0000 0.0000 
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IHI 0.1011 0.0431 0.2340 0.0074 0.0050 
XLY 0.0592 0.2038 0.1495 0.0000 0.0000 
ITB 0.0315 0.0000 0.0000 0.0000 0.0000 
IYT 0.0000 0.1400 0.0000 0.0000 0.0000 
XLI 0.0937 0.0322 0.0000 0.0000 0.0000 
VOX 0.0000 0.0009 0.0000 0.0000 0.0000 
XLP 0.0000 0.0000 0.0000 0.0000 0.0000 
XLE 0.0000 0.0000 0.0000 0.0000 0.0000 
USO 0.0000 0.0000 0.0000 0.0000 0.0000 
OIH 0.0000 0.0000 0.0000 0.0000 0.0000 
VNQ 0.0078 0.0000 0.0000 0.0000 0.0000 
XLB 0.0988 0.1850 0.0000 0.0000 0.0000 
GDX 0.0509 0.0189 0.0000 0.0904 0.0000 
CUT 0.0173 0.0000 0.0000 0.0000 0.0000 
XLU 0.0951 0.0000 0.0000 0.0000 0.0000 

Annualized 
Risk 0.2121 0.2249 0.2382 0.2475 0.2649 

Annualized 
Expected 

Return 
0.1977 0.2397 0.2976 0.3298 0.3473 

Sharpe 
Ratio 0.7438 0.8879 1.0816 1.1707 1.1600 

 
ω = 0.7 has the highest Sharpe ratio, 1.1707 and ω = 0.1 has the lowest Sharpe ratio, 0.7438. When 
ω is larger, the optimal local search ability is weak, and the global search ability is strong. A higher ω =
0.7 and ω = 0.9 is considered as best because its Sharpe ratio is more than 1 which is represents a 
higher return than volatility risk. However, the result shows that both have an ETF that is more than 90% 
weighted, resulting in a risky portfolio that cannot effectively rely on other ETFs to diversify risk. 
Therefore, ω = 0.5  will be used for the following optimization.  

 

   

Sharpe ratio (ω = 0.1) 
Sharpe ratio (ω = 0.3) Sharpe ratio (ω = 0.5) 
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Figure 2 Sharpe ratio graph for different ω. 

 
Figure 2 shows the graph of Sharpe ratio for different. Sharpe ratio graph of ω = 0.3, 0.5, 0.7, 0.9 shows 
the linear pattern graph. The Sharpe ratio graph of ω = 0.1 shows all the points concentrated in the 
middle. It is possible that this is due to its low inertia weight. When ω is smaller, the optimal local search 
ability is strong, and the global search ability is strong. This is the one leading to the absence of other 
particles in the periphery. 
 

Table 2: The result of inertia weight, ω = 0.5 
 

FUND Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Average 
Weight 

VGT 0.0826 0.4511 0.372 0.6291 0.1203 0.3310 
IGV 0.3401 0.0579 0.2596 0.3008 0.3284 0.2574 
XLF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
KIE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
XBI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
IHI 0.2032 0.4653 0.3684 0.0701 0.1713 0.2557 

XLY 0.0789 0.0000 0.0000 0.0000 0.3119 0.0782 
ITB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
IYT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
XLI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
VOX 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
XLP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
XLE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
USO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
OIH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
VNQ 0.1394 0.0000 0.0000 0.0000 0.0000 0.0279 
XLB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
GDX 0.1558 0.0257 0.0000 0.0000 0.0682 0.0499 
CUT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
XLU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Annualized 
Risk 0.2097 0.2296 0.2390 0.2582 0.2213 0.2316 

  

Sharpe ratio (ω = 0.9) Sharpe ratio (ω = 0.7) 
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Annualized 
Expected 

Return 
0.2543 0.2986 0.3054 0.3311 0.2744 0.2928 

Sharpe 
Ratio 1.0219 1.1263 1.1102 1.127 1.0594 1.0890 

 
The PSO algorithm of ω = 0.5 was carried out 5 times to find the optimal weights and Sharpe ratio. 
Because of the presence of random numbers, the average Sharpe ratio and average optimal weights 
will be used. The results show that it will allocate 33.10% in VGT, 25.74% in IGV, 7.82% in XLY, 25.57% 
in IHI, 2.79% in VNQ, and 4.99% in GDX.  The Sharpe ratio is 1.0890 and is considered good because 
its returns are greater than risks.  
 
4.7 Portfolio Optimization using the PSO Algorithm after Adjusting 
 
But at a realistic level, they are still too heavily weighted to help diversify the portfolio well. And most of 
the funds in the portfolio have a weight of 0. So, to better diversify the risk, the portfolio optimization will 
be adjusted so that each fund will have a weight of at least 0.5% and no more than 20%. This is because 
even if one fund performs poorly, it will not affect the return of the portfolio significantly. 
 

Table 3: The results after adjusted 
 

FUND Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Average 
VGT 0.0678 0.0437 0.0929 0.0702 0.0634 0.0676 
IGV 0.0788 0.1093 0.0920 0.1137 0.1156 0.1019 
XLF 0.1063 0.0220 0.0246 0.0166 0.0630 0.0465 
KIE 0.0828 0.0953 0.0338 0.0463 0.0361 0.0589 
XBI 0.0857 0.0447 0.0533 0.0068 0.0353 0.0452 
IHI 0.0482 0.0693 0.0880 0.1081 0.0316 0.0690 

XLY 0.0246 0.0281 0.0583 0.0766 0.0488 0.0473 
ITB 0.0021 0.0886 0.0733 0.0873 0.0871 0.0677 
IYT 0.0546 0.0881 0.0079 0.0184 0.0252 0.0388 
XLI 0.0443 0.0682 0.0343 0.0046 0.0196 0.0342 
VOX 0.0241 0.0163 0.0600 0.0043 0.1020 0.0413 
XLP 0.0407 0.0697 0.0954 0.0594 0.0819 0.0694 
XLE 0.0022 0.0101 0.0118 0.0787 0.0485 0.0303 
USO 0.0194 0.0116 0.0155 0.0074 0.0086 0.0125 
OIH 0.0031 0.0108 0.0006 0.0006 0.0112 0.0053 
VNQ 0.0801 0.0202 0.0244 0.0122 0.0116 0.0297 
XLB 0.0839 0.1272 0.1213 0.0964 0.0065 0.0871 
GDX 0.0990 0.0379 0.0444 0.0369 0.1204 0.0677 
CUT 0.0105 0.0228 0.0381 0.0801 0.0303 0.0364 
XLU 0.0419 0.0162 0.0299 0.0755 0.0532 0.0433 

Annualized 
Risk 0.2055 0.2157 0.2067 0.2117 0.2041 0.2087 

Annualized 
Expected 

Return 

 
0.1748 

 
0.1817 

 
0.1936 

 
0.1915 

 
0.1819 

 
0.1847 
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Sharpe 
Ratio 0.6559 0.6572 0.7433 0.7157 0.6954 0.6935 

 
The PSO algorithm of ω = 0.5 was carried out 5 times to find the optimal weights and Sharpe ratio. 
Because of the presence of random numbers, the average Sharpe ratio and average optimal weights 
will be used. The results show that it will allocate 6.76% in VGT, 10.19% in IGV, 4.65% in XLF, 5.89% 
in KIE, 4.52% in XBI, 6.90% in IHI, 4.73% in XLY, 6.77% in ITB, 3.88% in IYT, 3.42% in XLI, 4.13% in 
VOX, 6.94% in XLP, 3.03% in XLE, 1.25% in USO, 0.53% in OIH, 2.97% in VNQ, 8.71% in XLB, 6.77% 
in GDX,, 3.64% in CUT, and 4.33% in XLU. The highest weighted fund is IGV, and the lowest weighted 
fund is OIH. The Sharpe ratio is 0.6935 and is considered to be not preferred because its returns are 
less than risks.   

 
By comparing the Sharpe ratio between portfolio optimization not adjusted and adjusted, we can 

conclude that the Sharpe ratio of the unadjusted portfolio optimization is better and that the strategy 
yields higher returns while taking the same level of risk. A low Sharpe ratio does not mean that it has a 
low return, but that it takes on more volatility. But in investment, it is possible to choose different 
strategies in different situations, not necessarily based on the Sharpe ratio. It is possible to use a more 
aggressive risk-taking strategy to pursue high returns, or to use a safe and low-risk approach to pursue 
the corresponding returns.  

 
Therefore, the objective of this research was achieved. The PSO  is well-suited for optimizing 

portfolios, as it can effectively find the optimal weight allocation for the portfolio. 
 
Conclusion 
 
The Particle Swarm Optimization (PSO) is suitable to be applied in portfolio optimization. The 
advantages of PSO are the algorithm is simple, with few parameters, and fast convergence. It can be 
easily implemented in programming such as Python, C++, and MATLAB. Besides that, PSO does not 
require the optimized function to be differentiable and derivable, and is suitable for solving nonlinear, 
nonconvex, and high-dimensional function optimization problems. By using PSO, it is possible to use 
the Sharpe ratio as an indicator to allocate the weighting of assets in a portfolio according to risk-taking 
level.  

 
However, the local search capability of PSO is poor, and when there are functions with multiple 

local optimal solution, it is easy to be trapped into the local optimal solution. Moreover, the search rate 
of PSO is less consistent, and the number of iterations is occasionally high. In each step of the iteration, 
only the global best and the personal best information are utilized, and the PSO algorithm often unable 
to obtain accurate outcomes. 

   
The Sharpe ratio is a better indicator of risk and  is a very convenient way to measure how well 

a strategy is doing. Therefore, it is often used in fund performance, asset allocation and other long-term 
investment performance measurement. But it is not sufficient to choose a fund product based on the 
Sharpe ratio as a whole; it needs to be evaluated in combination with long-term returns, investment win 
rate and other metrics to make a comprehensive assessment before investing. 
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