
 
Vol. 18, 2023, page 48 – 61 

 
Time Series Modelling and Forecasting of Kuantan Temperature Changes Based 

on Box-Jenkins 
 

Nuramalia Farisha Mohd Rizal, Ani Shabri* 
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia 

*Corresponding author: ani@utm.my 
 
Abstract 
The Box-Jenkins method is the most commonly employed to forecast future values. The approach has 
been applied in a variety of sectors, including environmental sciences. Malaysia's climate is classified as 
tropical because it is located near the equator and is hot and humid all year. Kuantan is one of the 
Malaysian cities with high maximum temperatures. The goals of this project are to investigate and identify 
the best model for predicting maximum temperatures in Kuantan. The analysis was carried out from 
January 2003 until Disember 2003. The study was carried out using the Box Jenkins technique and 
ARIMA (Autoregressive Integrated Moving Average) models. 
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1. Introduction 
 
Malaysia experiences high humidity throughout the year with tropical temperatures between 27°C to 
35°C. On the East Coast, Kuantan state adheres to this, however from November to January, the 
Northeast Monsoon changes the humidity levels. It may rain hard every day with thunderstorms during 
this time. Water resources in Kuantan are being impacted by the local and global climate change. For 
instance, the severe drought caused by the 1997–1998 El Nino led to water shortages in several areas 
of Malaysia. Malaysia's water planning does not effectively account for changing climatic patterns. 
Climate change cannot produce the weather that is predicted for the upcoming few days.  

 
It is obvious that we need to be able to forecast the weather in Kuantan for the upcoming several 

days. We can predict the average climate for a specific time period using mathematics. There are records 
of numerous human forecasting methods dating back to the beginning of recorded history (Gan T.C. and 
Alhabshi, 1980). The applicability of univariate Box-Jenkins (1976) ARIMA models for predicting climate 
change was confirmed by Fatimah and Roslan in 1986. Additionally, it has been demonstrated that 
ARIMA models are quite effective in making short-term forecasts (Fatimah and Gaffar, 1987).When 
compared to econometric models, Mad Nasir (1992) highlighted that ARIMA models have the advantage 
of relatively inexpensive research expenses and are effective for short-term forecasting. Additionally, 
Lalang et al. (1997) demonstrated that the ARIMA model is the best method for predicting the price of 
palm oil. The technique and outcomes of fitting a suitable time series model to the climate change in 
Kuantan are briefly discussed in this study. Our conclusion is then presented. 
 
2. Literature Review 

 
2.1  Nonsense-Correlations between Time-Series 
 
Yule initially introduced autoregressive (AR) models in 1926. As a result, Slutsky, who introduced Moving 
Average (MA) methods in 1937, added to them. However, it was Wold (1938) who integrated the AR and 
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MA schemes and demonstrated that ARMA processes may be used to describe any stationary time series 
for as long as  the right amount of AR terms and MA terms p and q are provided in the right order. 
Therefore, any series 𝑥! can be represented as a combination of previous 𝑥! values and/or previous 
𝑒!	errors, or 

𝑥! =	𝜑"𝑥!#" 	+ 𝜑$𝑥!#$	 +⋯	+		𝜑&𝑥!#&	 	+ 𝑒! −	𝜃"𝑒!#" − 𝜃$𝑒!#$	 −⋯−	𝜃'𝑒!#'																											 (1) 

Equation (1) requires four steps to model real-world time series. The original series X1 must first be 
modified so that it becomes stationary around its mean and variance. Second, the proper sequence of p 
and q must be stated. Third, the parameters 𝜑"		, 𝜑$, … , 𝜑&		and/or 𝜃", 𝜃$. . . , 𝜃& must be determined using 
a non-linear optimisation process that minimises the sum of square errors or another appropriate loss 
function. Finally, actual methods for modelling seasonal series need to be envisioned, as well as the right 
order of such models. 
 
2.2  Analysis of Stationary Time Series 
 
The use of  Wold's theoretical results, stated by equation (1), to model real-world series was not practical 
until the mid 1960s, when computers capable of executing the requisite calculations to optimise the 
parameters of (1) became accessible and affordable. Box and Jenkins (1976, first published in 1970) 
popularised the usage of ARMA models by publishing the following: (a) establishing parameters for 
making the series stationary in terms of both mean and variance,(b) recommending the application of 
autocorrelations and partial autocorrelation coefficients to calculate appropriate values of p and q (and 
their seasonal equivalent P and Q once the series was seasonal), and (c) providing a set of computer 
programmes to assist users in identifying appropriate values for p and q, as well as P and Q, and 
estimating the parameters involved. and (d) once the model's parameters were estimated, a diagnostic 
check was proposed to establish whether or not the residuals e were white noise, in which case the 
model's order was regarded definitive (otherwise, another model was evaluated in (b), and steps (c) and 
(d) were repeated). If the diagnostic check revealed random residuals, the model created was employed 
for forecasting or control purposes, given, of course, that the order of the model and any non-stationary 
behaviour remained constant during the forecasting or control phase. 
 
2.3  The Performance of Quarterly Econometric Models. 
 
Box and Jenkins' approach to ARIMA models became known as the Box-Jenkins methodology, with the 
letter "I" standing for the word "Integrated" between AR and MA. ARIMA models and the Box-Jenkins 
methodology gained popularity among academics in the 1970s, particularly after empirical research 
(Cooper, 1972; Nelson, 1972; Elliot, 1973; Narasimham et al., 1974; McWhorter, 1975) demonstrated 
that they could outperform large and complex econometric models popular at the time. 
 
2.4  Comparison of Forecasting Models Accuracy  
 
In the article “ARIMA: An Applied Time Series Forecasting Model for the Bovespa Stock Index” the MAPE 
is used to determine which model, among several different forecasting models, is the most accurate in 
forecasting the Brazilian stock index Bovespa. Among the models, the authors compare an 
autoregressive model, two different exponential smoothing models, and an ARIMA(0, 2, 1). The Box-
Jenkins methodology is followed when building the ARIMA model in the article. The authors conclude 
that according to the data, an AR(1) is the most accurate model since it has the lowest out-of-sample 
MAPE. The authors further conclude that an AR(1) for the Bovespa stock index is an adequate model to 
use as a tool to forecast the index (Rotela Junior et al. 2014). 
 
2.5  Building a Forecasting Model; Using the Box-Jenkins Methodology  
 
In their research, Paretkar et al. (2010) followed the Box-Jenkins methodology to build a seasonal 
autoregressive integrated moving average, or SARIMA, which was supposed to forecast the short-term 
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power flows on transmission interties in the USA. A SARIMA is a modified ARIMA that should be used if 
there is a seasonal pattern in the time series that is intended to be forecasted. Each specific day of the 
week was unique for the used data, therefore the authors used weekly data for each Thursday from 
January 2006 to May 2008 to build the SARIMA model, intended to forecast 16 Thursdays ahead. The 
conclusion of the study showed that by applying the techniques of the Box-Jenkins methodology, it is 
possible to build a model that fits the data and the chosen model in the research was sufficiently accurate 
in forecasting the time series. If there is a seasonal pattern in a time series, a SARIMA will be sufficiently 
accurate in forecasting the time series. Furthermore, the authors concluded that a SARIMA is more 
accurate in the short-run than it is in the long-run and the 14 parameters should therefore be re-estimated 
as time goes on, given that long-term forecasting is desired. 
 
2.6  Comparing the AIC of Different Models to Find the Best Fit  
 
By using Akaike’s information criterion, Snipes & Taylor (2014) performed research to discover the best-
fitted model to explain the relationship between the rating of wines and the respective price. In their 
research, they used what is known as the AICc which is a slightly modified AIC. Similar to AIC, the AICc 
penalizes the addition of unnecessary information to a statistical model and the model with the lowest 
AICc score, among different models, has the best fit based on the data. To find the best-fitted model to 
explain the relationship, Snipes and Taylor estimated nine different regression models where the next 
model included either new or additional information compared to the previous. The conclusion of the 
research was that they were able to confirm previous studies and they also found an additional variable 
which has not been considered in earlier studies that was significant when explaining the relationship. 
Moreover, the authors concluded that additional information in a regression model does not necessarily 
improve the regression model’s ability to explain the regressand, since the model that they found to have 
the best fit had relatively few regressors compared to many other estimated models in their research. 
This further means that the AIC finds a well-balanced model and a more complex regression model is not 
always the most accurate. 
 
2.7  Temperature Distribution in Malaysia’s Climate  
 
Malaysia enjoys consistent temperatures all year round due to its equator-bound location. Except for 
Peninsular Malaysia's east coast, which is sometimes impacted by cold surges from Siberia during the 
northeast monsoon, the yearly fluctuation is less than 2°C. The annual variance, nevertheless, is under 
3°C. The daily temperature range is wide, ranging from 5 to 10 degrees Celsius for coastal stations and 
8 to 12 degrees Celsius for sites inland, but daily high temperatures comparable to those seen in tropical 
continents have not yet been recorded. Despite the frequently warm days, the evenings are generally 
cool. 

 
Despite the fact that seasonal and geographic differences in temperature are generally slight, they 

can be identified in several ways. The east coast of Peninsular Malaysia experiences a noticeable 
fluctuation in temperature during the monsoon season. The months with the greatest monthly average 
temperature are April and May, while the months with the lowest monthly average temperature are 
December and January. 
 

In comparison to locations in the west, the majority of the east of the Alps experience lower mean 
daily temperatures. The northeast monsoon's low daily temperatures in the eastern region and the 
resultant heavy cloud cover are to blame for these changes. The midday temperature in Kuala 
Terengganu, for instance, rarely rises beyond 27°C during the northeast monsoon. The lowest 
temperature recorded in some instances, which is often achieved during the night at most regions, is 
24°C. Typically, nighttime temperatures range from 21 to 24 degrees Celsius. Cool evenings are typically 
followed by a scorching afternoon; nevertheless, temperatures in almost all stations can be decreased 
substantially lower than these temperature ranges. 
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3.  Methodology 
 
3.1 Disposition 
 
The following section introduces the efficient market hypothesis and some of its critiques with their 
corresponding counter-arguments. Thereafter the theoretical framework of time series econometrics is 
introduced to create a fundamental understanding of the requirements of time series analysis and ARIMA 
forecasting. In the fourth section the empirical strategy is presented; including how to detect stationarity, 
the modelling approach of the Expert Modeler, the Box-Jenkins methodology, the Ljung- Box statistic, 
Akaike’s information criterion, explanation of the used indices, and the measurements intended to 
evaluate the ARIMA models’ out-of-sample forecasting accuracy. After the empirical strategy, previous 
research closely related to the topic of this thesis is presented and summarized in the literature review. 
The analysis follows the literature review, where the descriptive statistics are presented, followed by a 
validation of the Expert Modeler’s suggested models and a comparison of different models using AIC, 
MPE and MAPE is performed. After the comparison, the out-of-sample forecasts of the best-fitted models 
and the line charts of the forecasts are displayed in the analysis. The analysis also includes a comparison 
of the results in this study to the results of previous studies on similar topics. To summarize the thesis, a 
conclusion based on the empirical strategy and the analysis is conducted in section seven. The 
conclusion section also includes suggestions for further research on this topic. 
 
3.2 Time Series Econometrics 
 
3.2.1 Time Series Data  
 
Time series data is defined as a collection of values of a variable that differs over time. The intervals 
between observations of a time series can vary. However, the range of the intervals should be consistent 
throughout the observed period e.g. daily, weekly, monthly etc. In general, the time series is assumed to 
be stationary in empirical work based on time series (Gujarati & Porter 2008).  
 
3.2.2  Stochastic Processes  
 
A process is said to be stochastic, or random, if the collection of a variable is gathered over a sequence 
of time. A stochastic process can be either stationary or nonstationary (Gujarati & Porter 2008). 
 
3.2.3  Autoregressive Model  
 
An autoregressive model is a model where the dependent variable is regressed on at least one lagged 
period of itself. If an autoregressive model includes one lagged period of itself, it follows a first-order 
autoregressive stochastic process, denoted AR(1). Furthermore, if the model includes p number of lagged 
periods of the dependent variable, it follows a pth-order autoregressive process, denoted AR(p) (Gujarati 
& Porter 2008). 
 
3.2.4  Stationary Process  
 
There are different types of stationarity. Second order stationary, commonly known as weakly stationary, 
is considered to be sufficient in most empirical works. A stochastic process is weakly stationary if it has 
constant mean and variance and the covariance is time invariant, i.e. the statistics do not change over 
time (Gujarati & Porter 2008). A white noise process is a special type of stationary stochastic process. A 
stochastic process is considered to be white noise if the mean is equal to zero, the variance is constant, 
and- the observations are serially uncorrelated (Gujarati & Porter 2008). 
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3.3  Nonstationary Process 
 
A stochastic process that has a time-varying mean, variance, or covariance is said to be nonstationary. 
Financial data usually follows a random walk which is a type of nonstationary stochastic process. A 
random walk is either with or without drift, indicating the presence of an intercept, and is an AR(1) process. 
 
Regressing 𝑌! on 𝑌!#" estimates the following  

𝑌! = 𝜌𝑌!#" +	𝑢!                                                                    (6) 

and if 𝜌 equals 1, the model becomes what is known as a random walk (Gujarati & Porter 2008). A random 
walk without drift is a process where the dependent variable can be estimated on one lagged period of 
itself plus an error term, assumed to be white noise, known as a random shock. The formula for a random 
walk without drift excludes the intercept. The mean is constant over time in a random walk without drift, 
however, the variance is increasing indefinitely over time, making it a nonstationary stochastic process 
(Gujarati & Porter 2008).  
 
Random walk without drift:  

𝑌! = 𝑌!#"	 +	𝑢!	                                                                    (7) 

Similar to a random walk without drift, a random walk with drift is a process where the variable is 
dependent on its own lagged values and a random shock. However, the model that may be used to 
estimate a random walk with drift includes an intercept known as the drift parameter, denoted by 𝛿. This 
parameter indicates if the time series is trending upwards or downwards, depending on whether 𝛿 is 
positive or negative. A random walk with drift is a nonstationary stochastic process since the mean and 
variance are increasing over time (Gujarati & Porter 2008). 
 
Random walk with drift:  

𝑌! = 	𝛿	 + 	𝑌	!#" + 	𝑢!                                                             (8) 

The preceding random walks have infinite memory which means that the effects of random shocks persist 
throughout the whole time period. The random walks are known as difference stationary processes, 
meaning that even though the stochastic processes are nonstationary, they become stationary through 
the first order difference (Gujarati & Porter 2008). 
 
3.4  Integrated Process 
 
A nonstationary stochastic process that has to be differenced one time to become stationary, is said to 
be integrated of the first order, denoted 𝐼(1). Likewise, a nonstationary stochastic process that has to be 
differenced twice to become stationary, is said to be integrated of the second order, denoted 𝐼(2). 
Furthermore, this means that a nonstationary stochastic process that has to be differenced 𝑑 times, is 
said to be integrated of order 𝑑, denoted 𝑌" ~ 𝐼(𝑑). A time series that is stationary without any differencing 
is integrated of order zero, denoted 𝑌" ~ 𝐼(0) (Gujarati & Porter 2008). 
 
3.5  Deterministic Trend 
 
A time series that is deterministic can be perfectly forecasted. However, most time series are partially 
deterministic and partially stochastic, making them impossible to predict perfectly due to the probability 
distribution of future values (Chatfield 2003). If a variable is dependent on its past values and a time 
variable, it is estimated by the following;  

𝑌! =	𝛽"	 +	𝛽$𝑡 +	𝑌!#"	 +	𝑢!                                                    (9) 

where 𝑡 is a variable that measures time chronologically and 𝑢" is an error term, assumed to be white 
noise. The equation is known as a random walk with drift and deterministic trend and is stochastic but 
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also partially deterministic, due to the time trend 𝑡 (Gujarati & Porter 2008). 
 
3.6  Modelling of Time Series Data 
  
When working with forecasting of time series data, the underlying time series is assumed to be stationary. 
Assuming stationarity, there are several different approaches to construct forecasting models, for 
example an autoregressive process, a moving average process, an autoregressive and moving average 
process, and an autoregressive integrated moving average process (Gujarati & Porter 2008).  
 
3.6.1  Autoregressive Process  
 
An autoregressive process may be used to forecast a time series. As mentioned earlier, a first-order 
autoregressive model is denoted AR(1) and is	𝑌!	regressed on 𝑌!#" .An autoregressive model of the pth-
order is denoted AR(p) and takes the form of  

𝑌! 	= 	𝛿	 +	𝛼"𝑌!#" + 𝛼$𝑌!#$	+. . . +	𝛼&𝑌!#& +	𝑢!	                                 (10) 

where the constant is denoted by 𝛿 and	𝑢!	is white noise (Gujarati & Porter 2008). 
 
3.6.2  Moving Average Process  
 
In a moving average process, the dependent variable is regressed on current and lagged error terms and 
is therefore estimated through a constant and a moving average of the error terms. If the dependent 
variable is regressed on the current and one lagged error term, it follows a first-order moving average 
process, denoted MA(1). Moreover, a model that includes q number of error terms follows a qth-order 
moving average process, denoted MA(q). 
 
 A MA(q) process is defined as  

			𝑌	! = 	𝜇	 + 	𝛽(𝑢! 	+ 	𝛽"𝑢!#" +	 	𝛽$𝑢!#$	+. . . +		𝛽'𝑢!#'	                               (11) 

where the error terms 𝑢 are assumed to be white noise and 𝜇 is the constant (Gujarati & Porter 2008). In 
a MA model the error terms are usually scaled to make 𝛽: equal to one (Chatfield 2003). 
 
3.6.3  Autoregressive and Moving Average Process  
 
It is possible to combine an autoregressive process and a moving average process since the dependent 
variable often possess characteristics of both. This is called an autoregressive and moving average 
process, or ARMA. If both of the underlying AR and MA models are of the first-order, the model is denoted 
ARMA(1, 1) and 
 defined as 

𝑌! = 	𝜃	 +	𝛼"𝑌!#" 	+	𝛽(𝑢! 	+ 	𝛽"𝑢!#"                                                        (12) 

where 𝜃 is the constant. If the underlying autoregressive model is of order p and the moving average 
model is of order q, the ARMA process is denoted by ARMA(p, q) (Gujarati & Porter 2008). 
 
3.6.4 Autoregressive Integrated Moving Average Process 
  
If the time series of an ARMA model has to be differenced a certain number of times to become stationary, 
the model becomes what is known as an autoregressive integrated moving average model, or an ARIMA 
model. As mentioned previously, a time series which has to be differenced d number of times in order to 
become stationary, is integrated of order d, denoted 𝐼(𝑑). In its general form, the ARIMA model is denoted 
ARIMA(p, d, q) which means that the AR is of the pth-order, the time series is integrated d number of 
times, and the moving average is of the qth-order. This further means that if the underlying AR and MA 
models are of the first-order, and the time series is stationary at the first difference, the ARIMA model is 
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denoted ARIMA(1, 1, 1). It is important to note that an ARIMA model is not derived from any economic 
theory, that is, it is an atheoretic model. The Box-Jenkins methodology can be followed to determine p, 
d, and q and estimate an ARIMA model (Gujarati & Porter 2008). 
 
3.7  Emperical Strategy 
 
3.7.1  Detecting Stationarity 
 
There are several different methods to identify whether a time series is stationary or not. Graphical 
analysis is a visual approach where the time series is plotted against time. The purpose of the graph is 
to decide if there is a trend in the time series or if the time series satisfies the requirements of stationarity 
(Gujarati & Porter 2008).  
 

Another method to test for stationarity is by computing the autocorrelation function, also known as 
the ACF. The autocorrelation function is the ratio between the covariance at a specific lag, generally 
expressed as lag 𝑘, to the variance.  
 
At lag 𝑘, 𝜌)	denotes the ACF and is defined as follows; 

𝑝) =	
𝑌)
𝑌(

 

where 𝛾) is the covariance at lag 𝑘 and 𝛾( is the variance. The ACF can be plotted by using a correlogram. 
In the correlogram, if all or most of the lags are statistically insignificant, there is no specific pattern, 
constant variance, and the autocorrelations at various lags hovers around zero, the time series could be 
regarded as stationary. This means that a time series is most likely stationary if the ACF correlogram 
resembles a white noise process (Gujarati & Porter 2008).  

The choice of number of lags is an empirical question and has no obvious answer (Gujarati & Porter 
2008). In this thesis the number of lags used for the correlograms are twelve. The reasoning behind the 
chosen number of lags is because the data is observed monthly and it is therefore sensible, since twelve 
months sums to one year. 
 
3.7.2 The Box-Jenkins Methodology 
 
The Box-Jenkins methodology consists of four consecutive steps that should be followed when building 
an ARIMA model. The first step is called identification, and the purpose of this step is to determine 
appropriate values for p, d, and q. The ACF and the partial autocorrelation function (PACF) with their 
respective correlograms are used for pattern detection of p, d, and q in the first step. The PACF measures 
the autocorrelation between observations in a time series that are separated by k number of lags and the 
intermediate autocorrelation between the lags are held constant. Estimation of the parameters in the 
model is the second step. Step three is diagnostic checking, which tests the chosen ARIMA model’s 
goodness of fit, usually done by testing if the residuals are white noise. In the case of residuals that are 
not white noise, step one, two, and three should be repeated using new values for p, d, and q. However, 
if the residuals are white noise, the model should be accepted and it is possible to proceed to step four. 
Forecasting is the fourth step where the model may be used to predict desired periods for the time series 
(Gujarati & Porter 2008). 
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Figure 1: The Box-Jenkins Methodology. 
 
3.7.3  Ljung-Box Statistic 
 
To test if there is joint autocorrelation for a certain number of lags, the Ljung-Box statistic may be used. 
The Ljung-Box statistic has m degrees of freedom, where m is equal to the number of lags, and follows 
the chi-square distribution. Furthermore, it can be used to test if a series is white noise for a certain 
number of lags and the Ljung-Box statistic may therefore be used for the third step in the Box-Jenkins 
methodology, testing whether the residuals of the estimated ARIMA model are white noise. If the Ljung-
Box statistic is statistically insignificant, there is no evidence suggesting that residuals are not a white 
noise process. The Ljung-Box statistic is defined as 

𝐿𝐵 = 𝑛(𝑛 + 2)	@
𝑝̂)$

𝑛 − 𝑘

*

)+"

 

where 𝑛 denotes the size of the sample, 𝑚 denotes number of lags, and 𝑝̂) is the autocorrelation at the 
𝑘th lag (Gujarati & Porter 2008). 
 
3.7.4  Akaike’s Information Criterion 
 
Akaike’s information criterion, or AIC, is a criterion that may be used to choose the model with the best fit 
among different models. It is possible to evaluate regression models efficiency for both in- and out-of-
sample forecasting, using the AIC. Generally, adding regressors to a model provides a better fitted model. 
However, adding too many regressors to a model will result in adding unnecessary information. The AIC 
penalizes the addition of too much information and the AIC increases as a model becomes overfitted. 
Therefore, the model with the lowest AIC is the model with the best fit, given that the models have the 
same regressand. The AIC is defined as 

                  𝐴𝐼𝐶 = 𝑒$)/- .//
-

  

where 𝑘 denotes the number of estimated parameters in the model, 𝑛 is the sample size, and 𝑅𝑆𝑆 is the 
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residual sum of squares (Gujarati & Porter 2008). 
 
3.7.5  Mean Percentage Error & Mean Absolute Percentage Error 
 
The performance of a forecasting model when predicting the future of a given variable is usually of interest 
and several different statistical measurements, intended to evaluate the forecasting accuracy of a model, 
have been formulated. The forecasting errors are often included in the measurements and two 
measurements that are based on the relative forecasting errors are the mean percentage error (MPE) 
and the mean absolute percentage error (MAPE). While some measurements are differently scaled due 
to the characteristic of the variable and therefore misleading in comparisons, the MPE and MAPE are 
easily comparable since they are measured in percent (Montgomery et al. 2015). 

𝑀𝑃𝐸 =	
1
𝑛@K

𝑦!		 −		𝑦M!	(𝑡 − 1)
𝑦!

N
-

!+"

 

𝑀𝐴𝑃𝐸 =	
1
𝑛@O

𝑦!		 −		𝑦M!	(𝑡 − 1)
𝑦!

O
-

!+"

 

In the equations above, the 𝑦" represents the actual outcome of period 𝑡, 𝑦M!(𝑡 − 1) represents the 
forecasted value of period 𝑡 predicted at period (𝑡 − 1), and 𝑛 represents the number of periods predicted 
(Montgomery et al. 2015). 
 
4.  Results 
 
4.1  Data Collection 
 
We present the methods for fitting appropriate time series models to climate change in Kuantan in this 
section. The data was separated into two halves for the purpose of this study and included 365 
observations from the first day of January 2003 to the last day of December 2003. The first of the 334 
observations were utilised for model fitting, while the remaining data were preserved for post-sample 
accuracy testing. 

 
In theory, ARIMA(p,d,q) models are the most general class of models for forecasting a time series 

that can be stationarized using transformations like differencing and logging. In fact, ARIMA models can 
be thought of as fine-tuned versions of random-walk and random-trend models, with the fine-tuning 
consisting of adding lags of the series with differences and/or lags of the forecast errors to the forecasting 
equation as needed to remove any last traces of autocorrelation from the forecast errors. 
ARIMA is an abbreviation for “Auto-Regressive Integrated Moving Average.”  Lags of the differenced 
series showing up in the forecasting equation are referred to as “auto-regressive” terms, lags of forecast 
errors are referred to as “moving average” terms, as well as a time series that must be differenced to 
become stationary is referred to as a “integrated” versioning of a stationary series. ARIMA models include 
random-walk and random-trend models, autoregressive models, and exponential smoothing models (i.e., 
exponential weighted moving averages).(S.L.Ho,2002) 
 
An "ARIMA(p,d,q)" model is a nonseasonal ARIMA model, where: 
• p is the number of autoregressive terms, 
• d is the number of nonseasonal differences, and 
• q is the number of lagged forecast errors in the prediction equation. 

 
An ARMA (p,q) time series model can be defined as a series of observations {𝑍!	} that meet the difference 
equation shown below. 
 

MA(q): 
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𝑧! = 	𝛿 +	𝑎!	–	𝜃"𝑎!#"…−	𝜃𝑞𝑎!#'																																																																															(13) 

𝐸(𝑧!) = 	𝜇 = 𝛿 
𝐴𝑅(𝑝): 

𝑧! = 	𝛿 +	∅"𝑧!#" +	∅$𝑧!#$ +⋯∅&𝑧!#& +	𝑎!																																																														(14) 

𝛿 = 	𝜇Y	1 −	∅" −		∅$ −⋯−	∅&	Z ⇒																																																																												(15) 

	𝜇 = 0
(	"#	∅!#		∅"#⋯	∅#	)

																																																																																									(16) 

ARMA(p,q)                                                                                                                

𝑧! = 	𝛿 +	∅"𝑧!#" +	∅$𝑧!#$ +⋯∅!#& +	𝑎!	 −	𝜃"𝑎!#" − 𝜃$𝑎!#$……−	𝜃𝑞𝑎!#'			 

4.2  Result and Discussion   
 
The Department of Irrigation and Drainage Malaysia provided the data for this study, which used data on 
Kuantan climate changes from January 2003 to December 2003 (see Appendix A). The associated data 
will be historical data that is organised into daily units and is a time series. The most crucial factor to take 
into account when choosing the best forecasting techniques using time series data is the different sorts 
of data patterns. Box-Jenkins algorithms will be used to predict the highest temperature in Mersing. This 
study's goal is to find out how the Box-Jenkins method may be applied to predict maximum temperatures. 
Below, we discuss the models' specifics. 
 
4.3  ARIMA Model 
 
 
   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Data for Climate changers in Kuantan (1 Jan 2003 until 30 Nov 2003) 
 
In order to obtain ARIMA model, we need to work on a few methods such as first, taking natural log on 
the data to gain a constant variance of data. A time series plot Climate change in Kuantan appears in 
figure 2. It is clear that there exists a generally increasing non-linear trend. Hence the original series is 
not stationary in the sense as defined. The graph of ACF in figure 3 of the series displays a slow decrease 
in the size of ACF values, which is typical pattern for a non-stationary series. 
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Figure 3: Sample ACF from the Kuantan Climate Change Series 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: R command output from the ACF after differencing lag 1. 

 
The first step in fitting an ARIMA model is the determination of the order of differencing needed to 
stationarize the series. Normally, the correct amount of differencing is the lowest order of differencing that 
yields a time series which fluctuates around a well-defined mean value and whose autocorrelation 
function (ACF) plot decays fairly rapidly to zero, either from above or below. If the series still exhibits a 
long-term trend, or otherwise lacks a tendency to return to its mean value, or if its autocorrelations are 
are positive out to a high number of lags, then it needs a higher order of differencing. 
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NO Model Ljung-box
1 ARIMA(8,1,1) A=0.715 , P-value =0.06155
2 ARIMA(8,1,0) A=0.7333 , p-value = 0.05545
3 ARIMA(0,1,1) A=0.8155 , p-value = 0.03474

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3.2: R command output from the PACF after differencing lag 1. 

 
 The series appear to be stationary and we modeled it is as a stationary ARIMA model. From the 

R language output above, there are several ARIMA model can be performed. Nevertheless, the chosen 
ARIMA model are ARIMA (8,1,1), ARIMA (8,1,0) and ARIMA (0,1,1). Futhermore, these model were 
carried out the diagnostic checking using Ljung-Box. Test to find an adequate model. The result was 
shown in the table below. From the table below can adequate (P-value > 0.05). 
  

Table 1: P-Value result of models 
 
 
 
 
 
 
From the table above we can see all model 1, 2 and 3 are adequate (P-value > 0.05). Now we choose 
the best model from the adequate models. 
 

Table 2: AIC, MAE AND RMSE result for the edequate models. 
 

No Model AIC MAE RMSE 
1 ARIMA (1,1,0) 794.83 0.6217569950 0.7895833990 
2 ARIMA (8,1,1) 771.75 0.5848973700 0.7461070600 
3 ARIMA (8,1,0) 770.01 0.5835965500 0.7464024800 

 
According to minimum AIC criterion, ARIMA (8,1,0) had been chosen to be the most appropriate.  
This model's equation is provided by 
 
𝑍5	 = 0.0368𝑍!#" + 0.3804𝑍!#$ − 0.974𝑍!#6 +	0.2793𝑍!#5 + 0.2775𝑍!#7 + 0.487𝑋!#" + 0.5356𝑋!#$

− 0.6501𝑋!#6 − 0.0726𝑋!#5 + 1.0121𝑋!#7	 − 0.2792𝑋!#8 − 0.0451𝑋!#9 − 0.0301𝑋!#:
− 0.1244𝑋!#;																																																																																									 

 



Nuramalia Farisha Mohd Rizal & Ani Shabri (2023) Proc. Sci. Math. 18: 48 - 61 

 
 

60 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Figure 4: Forecast value 1 Dec 2003 until 31 Dec 2003 
 
Forecast produced using this model is shown in Figure 4. It is clear from the figure,the trend of the fitted 
values is generally consistent to that of the actual values. These finding suggest that ARIMA (8,1,0) model 
can capture the actual climate change in Kuantan future movement almost perfectly. 
 
Conclusion 
 
As a result, we can draw the conclusion that, among the available ARIMA Model options, ARIMA (8,1,0) 
is the most suitable model. This study uses Autoregressive Moving Average (ARIMA) time series models 
to model and forecast climate change in Kuantan. According to our empirical findings, ARMA models can 
accurately predict the future course of the climate change and suit the data on climate change effectively. 
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