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Abstract 
Finite element method was first established by Richard Courant in 1943 to handle specific boundary-

value issues for partial differential equations. Since then, the range of potential uses has grown steadily, 

and today includes nonlinear solid mechanics, fluid structure interactions, turbulent flows in industrial, 

multicomponent reactive flows, mass transfer in porous media, elastic flows in medical sciences, 

electromagnetism used this method to approximate the problems. This project discussed a one-

dimensional axial loaded bar solved by finite element methods. In finite element formulation, weak form 

is particularly useful because it leads to a system of algebraic equations that can be solved using 

numerical techniques. Weak form obtained from integrating the strong form over the approach was first 

established by Richard Courant in 1943 to handle specific boundary-value issues for Partial Differential 

Equation [4]. Then has been developed in 1950s, when engineers began employing numerical tools 

problem domain. Galerkin methods with linear and quadratic shape functions are used to achieve an 

accurate approximation of the solution. The stiffness matrix and load vector need to be formulated and 

solved to obtain the solution for a given problem. This project solved a problem using both shape 

functions starting with 2 elements. The approximate solution then will be compared to the exact solution 

by increasing the number of elements and nodes that will show in the graph. As a result, when the 

number of elements is increasing, the value of displacement for quadratic shape functions will give a 

better approximation compared to linear shape functions. 

 
Keywords: Finite element method; Axial loaded bar; Galerkin method; linear shape function; quadratic 

shape function. 

 
Introduction 
Finite elements used in various applications in partial differential equations such as science and 

engineering applications. It is involving equations of solids and fluids mechanics, heat transport, and for 

the propagation of acoustics and electromagnetic waves [2]. Since then, the range of potential uses has 

grown steadily, and today includes nonlinear solid mechanics, fluid structure interactions, turbulent flows 

in industrial, multicomponent reactive flows, mass transfer in porous media, elastic flows in medical 

sciences, electromagnetism used this method to approximate the problems. 

The ability of finite elements to interpolate in the approximation of scalar and vector-valued 

functions, as well as their capacity is to approximate mathematical models. Two key component that 

contribute to the efficiency of the finite element method given in terms of PDE within a suitable 

mathematical framework. FEM is a numerical method for doing FEA of any given mathematical concept 

Any physical phenomenon, such as the behavior of structures or fluids, heat transfer, wave propagation, 

or the development of biological cells, must be understood and quantified in its entirety using 

mathematics. In its current form the FE method was formalized by civil engineers. The method was 

proposed and formulated previously in different manifestations by mathematicians and physicists [2] . 

When it first came out, the finite element approach held out a lot of potential for the modelling of many 

mechanical applications in civil and aerospace engineering. 

FEM is one of the simplest and most established techniques for solving differential equations is 
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the use of finite difference approximations. It was initially recognised by L. Euler (1707–1783) around 

1768 in one dimension, and C. Runge (1856–1927) possibly extended it to dimension two around 1908. 

In a finite difference technique, approximate finite difference terms are used in place of the differential 

equations' derivatives. Instead of the differential equation, a sizable algebraic system of equations that 

can be solved quickly on a computer is provided. The elasticity equations describe how an elastic 

material moves under a force. An elastic material is one that returns to its original shape after the force 

is lifted.  

Modelling elasticity is useful in manufacturing applications such as suspension cables and nail 

bending, and biological applications such as weight on bones and tendons. In this project, we will 

consider the axially loaded bar in elasticity problem for a linear and quadratic shape function. Finite 

element equations established on the principle of virtual work, which are entirely equivalent to those of 

internal and boundary equilibrium, strain–displacement compatibility and constraint conditions [5]. 

In elasticity problem, it contains equilibrium equations relating to stresses, kinematic equations 

relating to the strains and displacements and the constitutive equations relating to the stresses and 

strains.  Linear elasticity, generalized Hooke’s law and stress-strain relations to form an equations of 

second-order ordinary differential equations. Hooke's law is a law of elasticity developed by the English 

scientist Robert Hooke in 1660. He mentioned that the displacement of the deformations of an object is 

directly proportional to the deforming force or load [1]. The concepts of stress and strain can also be 

used to describe Hooke's law. Stress is the force acting on a unit area of a material as a consequence of 

an externally applied force. The relative deformation brought on by tension is known as strain. Stress is 

proportional to strain at relatively low loads. This can be seen clearly in the application of bulk modulus, 

shear modulus, and Young's modulus. 

 

𝑆𝑡𝑟𝑒𝑠𝑠, 𝜎 =
𝐹

𝐴
∙  

 

𝑆𝑡𝑟𝑎𝑖𝑛, 𝜀 =
𝛿𝑙

𝐿
∙ 

 
where 𝜀 is the strain due to the stress applied, 𝛿𝑙 is the change in length and L is the original length of 

the material. The greater the stress, the greater the strain and the proportionality constant in this relation 

is called the Young modulus [1].  

Below is the relationship between stress, strain and Young Modulus: 
 

𝑠𝑡𝑟𝑒𝑠𝑠 =  (𝑌𝑜𝑢𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑢𝑠) × 𝑠𝑡𝑟𝑎𝑖𝑛. 
 
FEM is the most suitable method since the problem is about to solving the elasticity problem [4]. The 

term finite element approach only appeared in 1960, while the concepts behind finite element analysis 

actually have a considerably longer history when applied to elasticity problems. The work of Courant 

from 1943 marks the first attempts to employ piecewise continuous functions defined over triangular 

domains in the literature on applied mathematics [5].Displacement formulation, stress formulation, or 

mixed formulation methods can all be used to present the governing equations. 

The main purpose of this study is to aiming on solving one dimensional axially loaded elastic 

problem using finite element method. In FEM, the Galerkin Method is a kind of weighted residual 

method, where a trial function is assumed as solution [9].The function may not satisfy the differential 

equation and the boundary conditions exactly. By substituting the trial function in the differential equation 

and boundary condition, an error known as residual will be produced. This leads to a system of linear 

equations that can be solved to obtain the coefficients and therefore the solution to the PDE. The 

Galerkin method is a popular choice for solving PDEs in FEM because it is easy to implement, and it is 

also a good choice for problems with mixed boundary conditions [12]. In this project, we will solve an 

axially loaded bar using two different type of shape function which is linear and quadratic shape function. 

 
Problem definition and Formulation  
One dimensional structural problem of axial loaded bar fixed at one end shown in Figure 1 with unit 

length and unit cross sectional are. Approximate model and exact analytical solution will be discussed 

as the result in this project. [9] 

 

 

(1) 

(2) 

(3) 
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Figure 1 One-dimensional of a bar unit length subject to a linear body force and fixed 

point 𝑥 = 0 

 
Weak form 1-D bar problem is given as: 

 

∫𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑊

𝑑𝑥
𝑑𝑥 = ∫𝑊(𝑥)𝑏(𝑥)𝑑𝑥

𝑙

0

𝑙

0

,   0 ≤ 𝑥 ≤ 𝐿 

with boundary 𝑏0 where 𝑏(𝑥) is the parameter that may be functions of coordinate x.The essential and 

natural boundary conditions are of the form:  

𝑢|𝑥=0 = 𝑢0 
 

𝐴𝐸
𝑑𝑢

𝑑𝑥
|
𝑥=𝐿

= 0 

In 1-D problems, these boundary regions are the points 𝑥 = 0, and 𝑥 = 𝑙. For the problem of axial 

loaded bar, the primary variable u is longitudinal displacement, 𝑏 = 𝐸𝐴, where E is the elastic modulus 

and A is the cross sectional area. Exact analytical solution for the above problem is given by [8]: 

𝑢(𝑥) =
𝑎

6𝐸𝐴
(3𝐿2𝑥 − 𝑥3) 

 

Fundamental of Galerkin Weight Residual Method (WRM) 
Previous research from [12] mentioned that one dimensional elasticity problem can be solved using 

Galerkin method because it allows for the efficient and accurate solution by transforming the differential 

equations into a discrete algebraic system. A numerical method for solving differential equations in the 

field of finite element analysis is called the Galerkin Weight Residual Method (WRM) where the weight 

functions satisfy the specified boundary conditions, resulting in a more accurate and efficient numerical 

solution for one-dimensional elasticity problems [8]. As a result, an algebraic system of equations is 

created, which can be solved to determine an approximation of the solution. For the approximation to 

be accurate and to assure convergence, the weight function must meet a number of requirements. 

Typically, the trial function used to represent the unidentified solution utilized to determine the weight 

function. The basic concept of WRM is the integration of a function consists of a product of the residual 

function and a weight function and forcing the integrated value to zero in getting an algebraic function. 

The guessed solution is expressed in term of shape function, 𝑁𝑖 and degree of freedoms, 𝑢𝑖 instead of 

interpolation functions where both 𝑁1 and 𝑁2 is the shape function. 

 

 

 

 

Figure 2 Node generation in a bar 

 

The equivalent representation of a problem statement shown as Table 1: 
 
Table 1: Equivalent representation of problem statement 

 
Differential 

equation 

Weighted residual  

method 

Weak form 

𝑨𝑬
𝒅𝟐𝒖

𝒅𝒙𝟐
+ 𝒃(𝒙) = 𝟎 

subject to 𝒖(𝟎) = 𝟎 

AE
𝒅𝒖

𝒅𝒙
(𝑳) = 𝟎 

∫𝑤 (𝐴𝐸
𝑑2𝑢̂

𝑑𝑥2
+ 𝑏(𝑥))

𝑙

0

𝑑𝑥 = 0 

subject to 𝑢(0) = 0 

AE
𝑑𝑢

𝑑𝑥
(𝐿) = 0 

∫𝐴𝐸
𝑑𝑢̂

𝑑𝑥

𝑑𝑊

𝑑𝑥
𝑑𝑥 = ∫𝑊(𝑥)𝑏(𝑥)𝑑𝑥

𝑙

0

𝑙

0

 

subject to 𝑢̂(0) = 0 

𝑊(0) = 0 

 
The reason weak form was chosen because the functions need to be approximated by differentiable it 

(4) 

(5) 

(6) 
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once. 
 

 

 

  Finite element method on one dimensional elasticity problem 
  There are a few steps of FEM that has being discussed by [10], 
 
 
 
 
 
 
 
 
 
 

 Figure 3 Steps on solving axial loaded bar problem in finite element method 

 

Galerkin method in the FEM is used to approximate the solution of PDEs by discretizing the problem 

domain and constructing a system of algebraic equations. The global shape function represents the 

variation of unknown quantity throughout the domain, while the stiffness matrix relates the nodal 

displacements to internal forces or stresses. The stress and strain are computed from the displacement 

field and are crucial for analysing the structural behaviour. 

 
Approximate solution using Galerkin method 

Consider an elastic bar of variable cross section such as shown in Figure 4. The stiffness matrix and 

load vector need to be formulated and solved to obtain the solution for a given problem. This project 

solved a problem using linear and quadratic shape functions with 2 elements. 

 

(E= 200 × 106, 𝐴 = 0.04𝑚2, 𝐿 = 5𝑚, 𝑃 = 8 × 103𝑁, 𝑞 = 2 × 103𝑚2) 

 
 

 
 
 
 
Figure 4 One-dimensional bar 
 

boundary conditions: 

𝐸𝐴
𝑑𝑢(𝑥)

𝑑𝑥
|
𝑥=0

= −𝐹0 

𝐸𝐴
𝑑𝑢(𝑥)

𝑑𝑥
|
𝑥=𝐿

= 𝐹𝐿 

displacement boundary conditions: 
𝑢|𝑥=0 = 𝑢0 

𝑢|𝑥=𝐿 = 𝑢𝐿 
One dimensional linear element 
Approximate the problem using two linear element and find unknown 𝑐0, 𝑐1 by applying the boundary 

conditions: 

𝑢(𝑥) = 𝑐0 + 𝑐1(𝑥) 

At 𝑥 = 0, 
𝑢(0) = 𝑢1 ⇒ 𝑐0 = 𝑢1   

At 𝑥 = 𝑙, 
𝑢(𝑙 ) = 𝑢2 ⇒ 𝑢(𝑙 ) = 𝑐0 + 𝑐1(𝑙) 

 

𝑐1 =
𝑢2 − 𝑢1

𝑙
 

 
Then the equation becomes 

Select a 
displacement 
function 

 

Define the 
strain/displacement & 
stress/strain relationships 

 

Derive the element 
stiffness matrix & 
equations 

 

Assemble the 
element 
equations to 
obtain the global 
& introduce 
boundary 
conditions 

 

Solve for the unknown 
degrees of freedom  

 

Solve for the element 
strains & stresses  

 

Interpret the 
results 

 

(7) 
 
 

(10) 

(9) 

(8) 
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𝑢(𝑥) = 𝑢1 + (
𝑢2 − 𝑢1

𝑙
) (𝑥) 

 

= 𝑢1 (1 −
𝑥

𝑙
) + (

𝑥

𝑙
) 𝑢2  

 
Hence the shape function 

 

[𝑁1 𝑁2] = [(1 −
𝑥

𝑙
) (

𝑥

𝑙
)]. 

Stiffness matrix, 
 

[𝐾𝑒] = ∫ 𝐸𝐴[𝐵]𝑇[𝐵]𝑑𝑥

𝑙

0

 

[𝐵] = [
𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
] 

 

𝑊1(𝑥) = 1 −
𝑥

𝑙
,

𝑑𝑊1

𝑑𝑥
= −

1

𝑙
 

𝑊2(𝑥) =
𝑥

𝑙
,

𝑑𝑊2

𝑑𝑥
=

1

𝑙
 

∫𝐴𝐸
𝑑𝑢̂

𝑑𝑥

𝑑𝑊1

𝑑𝑥
𝑑𝑥 =

𝐴𝐸

𝐿
[1 −1]

𝑙

0

 

∫𝐴𝐸
𝑑𝑢̂

𝑑𝑥

𝑑𝑊2

𝑑𝑥
𝑑𝑥 =

𝐴𝐸

𝐿
[1 −1]

𝑙

0

 

 
Due to the symmetrically, element 1 and element 2 would have the local stiffness matrix  

 

[𝐾𝑒] = ∫𝐸𝐴 [
𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
]
𝑇

𝑙

0

[
𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
] 𝑑𝑥 

= ∫ 𝐸𝐴 ∙
1

𝑙
[
−1
1

] ∙
1

𝑙
[−1 1]𝑑𝑥

𝑙

0

 

𝐸𝐴

𝑙
[

1 −1
−1 1

] 

 
The component of local load vector, f for element 1 and 2  has 2-dimensional vector, 
 

∫𝑊(𝑥)𝑞

𝑙

0

(𝑥) = ∫𝑞[𝑁]𝑇𝑑𝑥

𝑙

0

 

∫𝑊1(𝑥)𝑞

𝑙

0

(𝑥) = ∫𝑊2(𝑥)𝑞

𝑙

0

(𝑥) = 𝑞 ∫ [
𝑁1

𝑁2
]

𝑙

0

𝑑𝑥 =
𝑞𝑙

2
[
1
1
] 

. 
Assemble the global stiffness matrix and  load vector, 

 
 
 

 
 

 
Figure 5 Finite element  mesh 1 

 
[𝐾𝑐]{𝑑𝑒} = [𝑓𝑒𝑥𝑡

𝑒 ] + {𝐹𝑖𝑛𝑡
𝑒 } 

𝐴𝐸

𝑙
[

1 −1
−1 1

] {
𝑢1

𝑢2
} =

𝑞𝑙

2
{
1
1
} + {

−𝑄1

𝑄2
} 

 
 

 

(11) 
 
 

(12) 

(13) 

(14) 

(15) 
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Figure 6 Finite element mesh 2 

 

𝐴𝐸

𝑙
[

1 −1
−1 1

] {
𝑢2

𝑢3
} =

𝑞𝑙

2
{
1
1
} + {

−𝑄2

𝑄3
} 

 

𝐴𝐸

𝑙
[

1 −1 0
−1 1 + 1 −1
0 −1 1

] [

𝑢1

𝑢2

𝑢3

] =
𝑞𝑙

2
[

1
1 + 1

1
] + [

𝑄0
(1)

𝑄𝑙
(1)

−

𝑄𝑙
2

𝑄𝑙
(2)

] 

 

𝐴𝐸

𝑙
[

1 −1 0
−1 2 −1
0 −1 1

] [

𝑢1

𝑢2

𝑢3

] =
𝑞𝑙

2
[
1
2
1
] + [

−𝑄0
(1)

0
0

] 

. 

Hence the displacement, 𝑢 and reaction force, 𝑄 can be calculated using the equilibrium equation, 
 

[𝐾]{𝑢} = {𝐹}{𝑄} 
 
where K stands for the global stiffness matrix, u is the displacement vector, F  is the force vector and 𝑄 

is the reaction force. Therefore, by solving argebraically, we can find the global stiffness matrix. 

   

𝐴𝐸

𝑙
[

1 −1 0
−1 2 −1
0 −1 1

] [

𝑢1

𝑢2

𝑢3

] = [
5 × 103

1 × 103

5 × 103

] + [
−𝑄0

(1)

0
0

] 

 

𝐴𝐸

𝑙
[

1 −1 0
−1 2 −1
0 −1 1

] [
0
𝑢2

𝑢3

] =  [
5 × 103

1 × 103

5 × 103

] + [
−𝑄0

(1)

0
0

] 

 

8 × 106 [
1 −1 0

−1 2 −1
0 −1 1

] [
0
𝑢2

𝑢3

] = [
5 × 103

1 × 103

5 × 103

] + [
−𝑄0

(1)

0
0

] 

 

Hence value for 𝑢2and 𝑢3, 
𝑢1 = 0𝑚, 𝑢2 = 2.0 × 103𝑚 𝑢3 = 3.0 × 103𝑚 

 
Thus the reaction force 𝑄, 

32𝑢2 = 4 + (𝑄)  
 

𝑄 = 1.5 × 103N. 
From Hooke’s Law, 

𝜎 = 𝐸𝜀 
 
where 𝜎 is the axial stress, E is the Young Modulus and 𝜀 is the axial strain. 

𝜎 =
𝐹

𝐴
 

 

𝜎 =
1. 5 × 103

0.04
 

 
= 3.75 × 103 𝑁/𝑚2. 

 

𝜀 =
𝜎

𝐸
= 1.875 × 103. 

 
 
To check that the result is correct, we will compare the numerical result against analytical solution of a 1-

(21) 

(16) 

(17) 

(18) 

(19) 

(20) 

(22) 
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D bar problem given by 

𝑢 = (
𝑞

2𝐸𝐴
) 𝑥2 + (

𝑝+𝑞𝑙

𝐸𝐴
) 𝑥 ∙ 

. 
The equation can be written as  

𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 
 
with shape function 

𝑊1(𝑥) = 1 −
3𝑥

𝑙
+

2𝑥2

𝑙2
−

𝑥

𝑙
, 
𝑑𝑊1

𝑑𝑥
= −

3

𝑙
+

4𝑥

𝑙2
 

 

𝑊2(𝑥) =
4𝑥

𝑙
+

4𝑥2

𝑙2
, 

𝑑𝑊2

𝑑𝑥
=

4

𝑙
−

8𝑥

𝑙2
 

 

𝑊3(𝑥) = −
𝑥

𝑙
+

2𝑥2

𝑙2
, 

𝑑𝑊2

𝑑𝑥
= −

1

𝑙
−

4𝑥

𝑙2
 

Then, the local stiffness matrix and the local nodal forces vectors can be established as: 
 

𝑁 = 〈𝑁1 𝑁2 𝑁3〉 
 

𝐵 = 〈
𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥

𝑑𝑁3

𝑑𝑥
〉 

 

𝑢 = (

𝑢1

𝑢2

𝑢3

) ∙ 

Hence 

[𝐵] = [−
3

𝑙
+

4𝑥

𝑙2
4

𝑙
−

8𝑥

𝑙2
−

1

𝑙
−

4𝑥

𝑙2
] ∙ 

 
If 𝐸is Young’s Modulus and 𝐴 is the cross sectional area of the element, the local stiffness matrix of the 

element is a 3 × 3 matrix and has the form: 

[𝐾𝑒] = ∫𝐸𝐴[𝐵]𝑇[𝐵] ∙ 𝑑𝑥

𝑙

0

 

[𝐾𝑒] = 𝐸𝐴 ∫

[
 
 
 
 
 −

3

𝑙
+

4𝑥

𝑙2

4

𝑙
−

8𝑥

𝑙2

−
1

𝑙
−

4𝑥

𝑙2 ]
 
 
 
 
 

𝑙

0

[−
3

𝑙
+

4𝑥

𝑙2
4

𝑙
−

8𝑥

𝑙2
−

1

𝑙
−

4𝑥

𝑙2
] ∙ 𝑑𝑥 

 

[𝐾𝑒] = 𝐸𝐴∫

[
 
 
 
 
 (−

3

𝑙
+

4𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
)

(
4

𝑙
−

8𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
)

(−
1

𝑙
−

4𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
)]
 
 
 
 
 

𝑙

0

 

𝐾11 = 𝐸𝐴 ∫(−
3

𝑙
+

4𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

= 𝐸𝐴 [
9

𝑙
−

12

𝑙
+

16

3𝑙
] 

=
𝐸𝐴

3𝑙
[7]  

  

𝐾13 = 𝐸𝐴∫ (−
3

𝑙
+

4𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

= 𝐸𝐴 [
3

𝑙
−

8

𝑙
+

16

3𝑙
]  

=
𝐸𝐴

3𝑙
[1] = 𝐾31  

  

𝐾23 = 𝐸𝐴 ∫(
4

𝑙
−

8𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

       = 𝐸𝐴 [−
4

𝑙
+

12

𝑙
−

32

3𝑙
]  

        =
𝐸𝐴

3𝑙
[−8] = 𝐾32  

𝐾12 = 𝐸𝐴∫(−
3

𝑙
+

4𝑥

𝑙2
) (

4

𝑙
−

8𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

= 𝐸𝐴 [−
12

𝑙
+

20

𝑙
−

32

3𝑙
] 

=
𝐸𝐴

3𝑙
[−8] = 𝐾21 

𝐾22 = 𝐸𝐴∫ (
4

𝑙
−

8𝑥

𝑙2
) (−

3

𝑙
+

4𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

= 𝐸𝐴 [
16𝑥

𝑙2
−

64𝑥2

2𝑙3
+

164𝑥3

3𝑙4
]
0

𝑙

 

         =
𝐸𝐴

3𝑙
[16]  

𝐾33 = 𝐸𝐴 ∫(−
1

𝑙
−

4𝑥

𝑙2
) (−

1

𝑙
−

4𝑥

𝑙2
) 𝑑𝑥

𝑙

0

 

       = 𝐸𝐴 [−
1

𝑙
−

4

𝑙
+

16

3𝑙
]  

       =
𝐸𝐴

3𝑙
[7]  

(24) 

(27) 

(23) 

(25) 

(26) 
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If E and A constant, the K has the form: 

 

[𝐾𝑒] =
𝐸𝐴

3𝑙
[

7 −8 1
−8 16 −8
1 −8 7

] 

 
Similarly from previous step in linear case, the nodal forces vector is a three dimensional vector has the 
form: 
 

∫ 𝑊(𝑥)𝑞
𝑙

0
(𝑥) = 𝑞[𝑁]𝑑𝑥 

= 𝑞 ∫

[
 
 
 
 
 
 1 −

3𝑥

𝑙
+

2𝑥2

𝑙2

4𝑥

𝑙
+

4𝑥2

𝑙2

−
𝑥

𝑙
+

2𝑥2

𝑙2 ]
 
 
 
 
 
 

𝑙

0

𝑑𝑥 

∫𝑊1(𝑥)𝑞

𝑙

0

(𝑥) = ∫𝑊2(𝑥)𝑞

𝑙

0

(𝑥) = ∫𝑊3(𝑥)𝑞

𝑙

0

(𝑥) = 𝑞𝑙

[
 
 
 
1

6⁄

2
3⁄

1
6⁄ ]
 
 
 

 

 
Therefore, 

𝐴𝐸

𝐿
[

8 −9 1
−9 18 −9
1 −9 8

] [

𝑢1

𝑢2

𝑢3

] = 𝑞𝑙

[
 
 
 
2

3⁄

5
3⁄

2
3⁄ ]
 
 
 

∙ 

Assemble the global and stiffness matrix and  load vector gives 
 

𝐴𝐸

𝐿
[

7 −8 1
−8 16 −8
1 −8 7

] [

𝑢1

𝑢2

𝑢3

] = 𝑞𝑙

[
 
 
 
1

6⁄

2
3⁄

1
6⁄ ]
 
 
 

+ [
−𝑄0

(1)

0
0

] 

To solve this system of equations for linear shape function, we have to apply the essential boundary 

condition u=0 at x=0. This is equivalent to set 𝑢1 = 0. 

1.6 × 106 [
7 −8 1

−8 16 −8
1 −8 7

] [
0
𝑢2

𝑢3

] =  𝑞𝑙

[
 
 
 
1

6⁄

2
3⁄

1
6⁄ ]
 
 
 

+ [
−𝑄0

(1)

0
0

] 

1.6 × 106 [
7 −8 1

−8 16 −8
1 −8 7

] [
0
𝑢2

𝑢3

] = [
1.6 × 103 + (−𝑄)

6.6 × 103

1.6 × 103

] 

 
Then solving for 𝑢2 and  𝑢3, 

𝑢1 = 0𝑚, 𝑢2 = 4 × 103𝑚 𝑢3 = 6 × 103𝑚 
 

Since 𝑢1 = 0 it is clear that the displacement field within an element e is given by 
 
Thus the reaction force Q,  

 

1.28 × 107𝑢2 + 1.6 × 106𝑢3 = 1.6 × 103 + (−𝑄) 

Q = 6.08× 103 N. 

From Hooke’s Law, 
𝜎 = 𝐸𝜀 

 
where 𝜎 is the axial stress, E is the Young Modulus and 𝜀 is the axial strain. 

 𝜎 =
𝐹

𝐴
 

  

(30) 

(31)

) 

 (4.91) 

(28) 

(29) 

(32)

) 

 (4.91) 

(33) 

(34) 
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𝜎 =
6.08 × 103

0.04
 

 
= 1.52 × 103 𝑁/𝑚2. 

Therefore the strain, 
 

𝜀 =
𝜎

𝐸
= 7.6 × 108.  

 

Results and discussion 

Below is the result of the graph for both shape function. 

 

 

 

 

 

 

 

 

 

 

Figure 7  Comparison between linear and quadratic approximation and exact result (3-nodes) 

 

Table 2: Comparison between linear approximation and exact solution (2-element, 3-node) 

 

 

 

 

 

 

 

 

 

 

Figure 8 Comparison between linear and quadratic approximation and exact result (5-nodes) 

 

Table 3: Comparison between quadratic approximation and exact solution (4-element, 5-node) 

 

x 0.0 m 2.5 m 5.0 m 

𝒖𝐥𝐢𝐧𝐞𝐚𝐫  0 0.0065 0.011 

𝒖𝐞𝐱𝐚𝐜𝐭 0 0.007 0.011 

𝐄𝐫𝐫𝐨𝐫𝐥𝐢𝐧𝐞𝐚𝐫 (%) 0 7.1429 0 

x 0.0 m 1.25 m 2..5 m 3.75 m 5.0 m 

𝒖𝐪𝐮𝐚𝐝𝐫𝐚𝐭𝐢𝐜 0 0.003 0.007 0.009 0.011 

𝒖𝐞𝐱𝐚𝐜𝐭 0 0.003 0.007 0.009 0.011 

𝐄𝐫𝐫𝐨𝐫𝐪𝐮𝐚𝐝𝐫𝐚𝐭𝐢𝐜(%) 0 0 0 0 0 
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Figure 9 Comparison between linear and quadratic approximation and exact result (6-nodes) 

 

 

Table 4: Comparison between quadratic approximation and exact solution (5-element, 6-node) 

 

Conclusion 

This paper discuss on solving 1-D elasticity problem using Finite Element Method. Weak form is 

particularly used because it leads to a system of algebraic equations that can be solved using numerical 

techniques. Weak form obtained from integrating the strong form over the problem domain. The choice 

between linear and quadratic shape functions depends on the desired level of accuracy. 

By increasing the number of elements and nodes, a finer discretization of the bar can be 

achieved. The additional nodes provide more data points capture the variations on the displacement 

more accurately. It is also implies reducing the size where smaller elements allow for a more localized 

approximation of the displacement field within each element. This helps to capture local variations and 

gradients more precisely .Use more nodes enable the use of higher order polynomials. Higher-order 

shape functions provide a better approximation of curvature leads to more accurate solutions. 

 As the mesh is refined, the numerical solution approaches the exact solution more closely. This 

convergence is essential for obtaining reliable and accurate results.   
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