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Abstract 
Rainfall is a significant meteorological phenomenon with an impact on local weather and global 
atmospheric circulation. Meteorological factors, such as temperature, humidity, wind, evaporation, and 
MSL pressure is the factor that influences rainfall. The study aimed to develop a rainfall model specific 
to a few regions in Pahang state and investigate the relationship between rainfall and meteorological 
factors in the regions. Rainfall and meteorological data for 11-year from 2010 to 2020 were used, 
recorded at four different rainfall stations in Pahang state. PCR analysis was used to process the data 
and obtain principal component variables that explained variability in the original data. Results showed 
that the two principal component variables derived from the PCR analysis can explain more than 80% 
of the variability present in the original data (Azapagic et al, 2018). The regression model analysis 
provided valuable insights into the dynamics of rainfall in the Pahang region and how meteorological 
factors contribute to rainfall patterns. The study demonstrated the usefulness of combining PCR analysis 
and R Studio software to understand rainfall patterns in the region. 
 
Keywords: Rainfall of Pahang, Meteorological Factor, Principal Component Regression Analysis. 
 
 
1. Introduction 
 
Freshwater is obtained through rainfall with a distribution that varies randomly over both time and 
location. According to Wang et al (2016), one type of weather and climate that significantly affects all 
aspects of human life is rainfall. The climate is a phenomenon that can change over space and time. 
South East Asia is experiencing climate change because of both global and local warming (Suhaila and 
Jemain, 2009, Tang et al., 2019). The impact of a changing climate on evapotranspiration and 
atmospheric water storage had an impact on rainfall quantity, frequency, and intensity. According to 
Meteorology Malaysia, the regular temperature, high humidity, and heavy rainfall make Malaysia's 
climate unique. The meteorological factor like Temperature, Humidity, Wind, Evaporation, and Air 
Pressure is most likely the factors that affect the intensity of rainfall. During the northeast monsoon 
period, the highest total rainfall received by Pahang Basins is about 40 percent annually (Nadiatul et al, 
2016). 

 
A few related past research papers have discussed statistical analysis that is widely used in 

modeling changes in the field of hydrology. Simple multiple regression was used by Rahman et al. 
(2013) to build a statistical forecasting strategy for rainfall during the summer monsoon across 
Bangladesh. The research papers presented suggest that the approaches used were not the best 
because they not take the multicollinearity issue into account. As a result, the models that were produced 
had multi-collinearity issues and needed to be modified. 
 

Currently, numerous scientific works use analytical techniques to solve the multicollinearity 
problem. For instance, Hussein and Hytham (2021) used Ridge Regression to solve the multicollinearity 
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problem by running a Monte Carlo simulation. Principal Components Analysis had been used to solve  
the multicollinearity problem of big data collection across many fields, such as genomics and business 
intelligence (Chan et al., 2022). Jaeyong Lee and Hee-Seok Oh (2013) used Principal Components 
Analysis to solve the multicollinearity problem in climate prediction problem. The purpose of this work is 
to use principal component regression to build a rainfall model to find out the rainfall relationship with 
meteorological variables in the Pahang region with the help of R Studio software.   

 
2.0 Principal Component Regression Analysis's Conceptual Principles 
 
One of the basic algebraic concepts utilized in principal component analysis is the concept of 
eigenvalues and eigenvectors. According to Johnson & Wichern (2007), matrix 𝐴 eigenvalues are 
𝑛	 × 	𝑛, denoted by: 

Det(𝜆𝐼	 − 	𝐴) = 	0 (1) 

𝐴𝑣 = 	𝜆𝑣 (2) 
where, 
Det : Determinant, 
𝜆 : The eigenvalue, 
𝐼 : Identity matrix, and 
𝑣 : The eigenvector. 

 
The concept of correlation should be used to portray the linear relationship between two or more 
quantitative variables. Standardized covariance is used to measure correlation. Multicollinearity could 
occur if there is a significant enough correlation between the independent variables. If there is 
multicollinearity, a variable in the regression model that has a high correlation with other variables may 
have a variable predictive value that is inconsistent and unstable (Vatcheva,2016). 
 

Correlation measures the strength of a linear relationship between two variables. One numerical 
measure is the Pearson product-moment correlation coefficient, r (Metsämuuronen, 2022). 

𝑟 =
𝑛∑𝑋𝑌 − ∑𝑋∑𝑌

4(𝑛∑𝑋!(∑𝑋)!) ×	(𝑛 ∑𝑌!(𝑌)!)
	 

(3) 

where, 

𝑛				 : The number of data, 
∑𝑋𝑌: : The sum of the product of the x-value and y-value for each point in the data set, 
∑𝑋: : The sum of the x-values in the data set, 
∑𝑌: : The sum of the y-values in the data set, 
∑𝑋!: : The sum of the squares of the x-values in the data set, and 
∑𝑌!: : The sum of the squares of the y-values in the data set.  

 

Properties of 𝑟: 
a) −1 ≤ r ≤ 1: The correlation coefficient always ranges between -1 and 1, inclusive. A value of -1 

represents a perfect negative linear relationship, 1 represents a perfect positive linear 
relationship, and 0 represents no linear relationship between the variables. 

b) When r is close to 1, it indicates a strong positive linear relationship between the variables x and 
y. As x increases, y tends to increase as well. 

c) When r is close to -1, it indicates a strong negative linear relationship between the variables x and 
y. As x increases, y tends to decrease. 

d) When r is close to 0, it suggests little or no linear relationship between the variables x and y. The 
variables may still have a nonlinear relationship or may be independent of each other. 
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2.1 Multiple Linear Regression Analysis 
 
A statistical method for examining, analyzing, and forecasting correlations between variables is 
regression analysis. The connection between a model's dependent variable, 𝑌, and one or more 
independent variables, 𝑋"	 is expressed using multiple regressions (Montgomery et al., 2012). The 
following equation can be used to represent multiple regression models: 
 

𝑌 =	𝛽$ +	𝛽%𝑋% +	𝛽!𝑋! +	𝛽&𝑋& +	𝛽'𝑋' +	𝛽(𝑋( + 	𝜀																																																(4) 
 
where 𝑌 is the rainfall (dependent variable)𝑋%, 𝑋!	, 𝑋&, 𝑋', and 𝑋(  (independent variables) are 
temperature, humidity, wind, evaporation, and MSL pressure respectively. 𝛽%, 𝛽!, 𝛽&, 𝛽', and 𝛽(	are model 
coefficients of the five independent variables. 𝛽$ is a constant while ε is the error. 
 
In general, the equation for the regression model can be portrayed in matrix notation as follows: 

𝑌	 = 	𝑋𝛽	 + 	𝜀																																																																																								(5) 

If the data does not contain multicollinearity, the Least Square Method can be used to estimate the β 
parameter. It is possible to compute it as follows: 

𝛽: = 	 (𝑋′𝑋))%𝑋′𝑌																																																																																				(6) 

 
3. Principal Component Analysis 
 
Karl Pearson discovered Principal Component Analysis (PCA) in 1901, and Harold Hotelling named it 
in 1933 (Martin., 2008). According to (Khan et al., 2021), PCA is particularly beneficial for overcoming 
collinearity in linear regression by merging explanatory factors into a smaller collection of uncorrelated 
variables. The basis for PCA can be either a covariance matrix or a correlation matrix. The principal 
component is described as a combination of the p original independent variables represented as a matrix 
in the following way if 𝛼 is an orthogonal matrix of 𝑝	 × 	𝑝 

																																									𝑊 = 𝛼′𝑋																																																																																										(7) 

?

𝑊%
𝑊!
⋮
𝑊*

A = ?

𝛼%% 𝛼!% … 𝛼*%
𝛼%! 𝛼!! … 𝛼*!
⋮ ⋮ ⋱ ⋮
𝛼%* 𝛼!* … 𝛼**

A?

𝑋%
𝑋!
⋮
𝑋*

A 																																																			(8) 

where, 
𝛼: The eigenvector matrix of 𝑝	 × 	𝑝,and 
𝑋: The original variable vector of 𝑝	 × 	1. 
 
In the form of a linear combination, it can be notated as: 

𝑊+ = 𝛼+,𝑋	 = 	𝛼%+𝑋% + 𝛼!+𝑋!+	. . . +		𝛼*+𝑋*		; 											𝑗	 = 	1,2,3, . . . , 𝑝																					(9) 

The original variable's 𝑝 is converted into a standard score, also known as standardisation, when it is 
measured in different units. The original variable 𝑋 can be standardised into the 𝑍 score using the 
formula below: 

𝑍 =
𝑋 − 𝜇
𝜎 																																																																											(10) 

where, 
𝑍: is the standardized value (𝑍 -score) of the variable 𝑋, 
𝑋: is the original value of the variable, 
𝜇: is the mean of the variable 𝑋, and 
𝜎: is the standard deviation of the variable 𝑋. 
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Using principal components with more than one eigenvalue is required by the principal component 
analysis using a correlation matrix requirement ((𝜆+ ≥ 	1). The cumulative percentage variation of the 
primary component serves as a measure for the overall data variance of the independent variable 
 
3.1 Principal Component Regression Analysis 
 
Principal component regression analysis, according to Abdullah et al. (2016), combines principal 
component analysis with regression analysis, with the principal component analysis operating as the 
analytical step. Many principal components are selected to be used as independent variables in the 
principal component regression analysis by estimating the regression coefficient using the Least Square 
Method. 
 

There are two techniques to produce principal component regression using principal component 
regression analysis and a covariance or correlation matrix (Jolliffe, 2010). Depending on the range of 
observations for the independent variable, one of the two techniques is used. 
Let the matrix A is an orthogonal matrix 𝑝	 × 	𝑝 with 𝐴,𝐴 = 𝐴𝐴, = 𝐼 where 𝑊 = 𝑋𝐴. The Principal 
Component Regression method is then used to convert the multiple linear regression equations method. 

𝑌	 = 	𝑋𝛽	 + 	𝜀	

𝑌	 = 	𝑋𝐴𝐴′𝛽	 + 	𝜀                                                               (11)	

𝑌	 = 	𝑊𝜃	 + 	𝜀 

Moreover, where 𝜃 is the regression parameter's vector and 𝜃 = 𝐴′𝐵. The simplified Principal Component 
Regression model to 𝑘 principal components is as described in the following:        

𝑌 =	𝜃$1 +	𝑊-𝜃- + 𝜀																																																																							(12) 

where, 
𝑌	: Dependent variable vector with the size of 𝑛	 × 	1, 
𝑋	: Independent variable matrix with the size of 𝑛	 × 	𝑝, 
𝛽	: Regression coefficient vector with the size of 𝑝	 × 	1, 
1	: Vector with all elements equal 1 with the size of 𝑛	 × 	1, 
𝑊-: Variable matrix principal component with the size of 𝑛	 × 	𝑘, 
𝜃-: Vector of Principal Component Regression coefficient with the size of 𝑘	 × 	1, and 
𝜀	: Vector of error/residual with the size of 𝑛	 × 	1. 
 
A few significant tests on the regression coefficient were run in order to analyze the principal component 
regression model's dependability. Both the principal component regression coefficient test and the 
principal component regression coefficient test were included in these tests. One may acquire an 
estimate of the principal component regression model after identifying the significant principal 
component variable for the dependent variable. The principal component regression model can then be 
converted to its original independent variable form to investigate the relationship or connection between 
the independent and dependent variables. 
 
4. Software in Principal Component Regression Analysis 
 
By utilising the R studio programme, we may reduce and simplify the calculations for Principal 
Component Regression Analysis. Software for statistical computing and data processing is called R 
studio (Chambers, 2010). A statistical and graphical programming language called R. R Studio is an 
integrated development environment (IDE). The creator of the ColdFusion programming language, JJ 
Allaire, introduced R Studio. Programming in C++ was used in part to construct R Studio.          
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4.1 Experimental Results 
 
Dataset 
All the data information was gathered from the Malaysia Meteorology Service (MMS). The temperature, 
humidity, wind, evaporation, and MSL pressure are all considered independent variables in this problem. 
The dependent variable will be rainfall. This study will be examined based on daily observations of the 
independent variables in Kuantan, Temerloh, Rompin, and Jerantut, Pahang. The rainfall data for the 
11 years between 2010 to 2020 were used to create the model. The locations in issue have been found 
to be flooded zones. 
The stations are: 

i. Station Batu Embun 
ii. Station Muadzam Shah 
iii. Station Temerloh 
iv. Station Kuantan 

 
Principal Component Regression Analysis 
The dataset of the dependent variable, namely the rainfall (𝑌) and the independent variables were air 
temperature (𝑋%), humidity (𝑋!), wind speed (𝑋&), evaporation (𝑋'), and air pressure (𝑋(), was gathered 
to evaluate the relationship between it using the principal component regression method. Table 1 
displays a few average daily data for 365 days from Batu Embun station from 2010-2020 that will be 
considered:  
 

Table 1: Dataset of daily rainfall and meteorological variables in Batu Embun 
 

Day Temperature 
(° C) 

Relative 
Humidity 

( % ) 

Rainfall 
(mm) 

Wind 
(m/s) 

Evaporation 
(mm) 

MSL 
Pressure 

(Hpa) 
1 25.6 88.2 3.1 0.5 1.8 1011.0 
2 25.9 88.5 5.8 0.6 2.2 1011.1 
3 25.8 88.8 10.9 0.5 2.1 1011.0 
4 26.3 86.5 2.7 0.5 2.2 1010.2 
5 26.4 86.0 0.7 0.5 2.5 1010.1 
6 26.6 86.0 3.3 0.5 2.8 1010.2 
7 26.2 86.5 6.6 0.6 2.5 1010.6 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

365 25.6 87.4 7.1 0.6 2.2 1010.9 
 
  

 
Figure 1 An average daily rainfall for four stations from 2010-2020 
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Standardizing the Independent Variables 
Since the original independent variables (𝑋) had multiple measurement scales, they were turned into 
standardised independent variables (𝑍) in this step. Standardizing the variables is useful in cases where 
the original variables have different measurement scales or units, as it allows for easier comparison and 
interpretation of the variables' effects in a statistical analysis. As shown in Table 2, the standardised 
independent variables may be derived. 
 
 

Table 2: The Standardized Independent Variables (Batu Embun station) 
 

n 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 
1 -1.932124459 1.463976709 -1.541806861 -2.725491499 1.475069521 
2 -1.653164672 1.568606289 -1.186483994 -1.999650123 1.563734123 
3 -1.689550731 1.683361312 -1.778688772 -2.138641025 1.448511105 
4 -1.073682991 0.821948605 -1.554966967 -1.999650123 0.457177687 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

 
Correlation Matrix Development on Standardized Independent Variables 
To determine if the multicollinearity issue was present or not, the correlation matrix between the 
standardised independent variables (𝑍) was created in this stage. Equation (3) and data processing in 
R Studio were used to calculate the correlation between the five standardised independent variables. 
The information is shown in Table 3. 
 

Table 3: The Correlation between Standardized Independent Variables (Batu Embun station) 
 

 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 
𝒁𝟏 1.0000000 -0.7252289 0.5905187 0.7269760 -0.5762860 
𝒁𝟐 -0.7252289 1.0000000 -0.7256199 -0.7621025 -0.0299018 
𝒁𝟑 0.5905187 -0.7256199 1.0000000 0.6998848 -0.0764204 
𝒁𝟒 0.7269760 -0.7621025 0.6998848 1.0000000 -0.1951773 
𝒁𝟓 -0.5762860 -0.0299018 -0.0764204 -0.1951773 1.0000000 

 
Based on Table 3, the correlation coefficients indicate that there are some moderate to high correlations 
between the variables. Specifically, temperature is highly correlated with both humidity and evaporation. 
Additionally, humidity and evaporation have a high negative correlation. These correlations coefficient 
suggest the presence of multicollinearity between temperature, humidity, and evaporation. As a result, 
the dependent variable may not be accurately predicted by the predicted value that is generated. 
 
Multicollinearity can pose challenges in regression analysis, such as inflated standard errors, unstable 
coefficient estimates, and difficulties in interpreting the individual effects of variables. It is recommended 
to address multicollinearity before performing regression analysis by applying techniques such as 
principal component analysis (PCA). 
 
Obtaining Eigenvalues and Eigenvectors 
Equations (1) and (2) were used to calculate the eigenvalues and eigenvectors. Following is a list of the 
eigenvalues and eigenvectors that were acquired by data processing in R Studio:  
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Table 4: Eigenvalues and Eigenvectors of the Research Variables at Batu Embun Station 
 

 𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 

𝒁𝟏 0.50352 0.30973 0.28732 -0.30730 0.68815 
𝒁𝟐 -0.49238 0.30967 -0.38818 0.42669 0.57351 
𝒁𝟑 0.46522 -0.24797 -0.83744 -0.12967 0.06295 
𝒁𝟒 0.50282 -0.09596 0.17588 0.84054 -0.02281 
𝒁𝟓 -0.18647 -0.85877 0.18581 -0.01345 0.43937 

Eigenvalues 3.19418 1.17475 0.33101 0.24250 0.05756 
Proportion 0.63884 0.23495 0.06620 0.04850 0.01151 
Cumulative 
Proportion 

0.63884 0.87379 0.93999 0.98849 1.00000 

 
Based on Table 4, the eigenvalues were greater than one (λ ≥ 1) on the first two principal components 
with eigenvalues of 3.19418 and 1.17475. Both eigenvalues are greater than one, indicating that these 
principal components contribute significantly to the overall variance in the data. Both principal 
components were able to explain 87.3% of the diversity of the entire original data. This suggests that 
these two principal components capture a substantial portion of the dataset's information. Therefore, the 
principal components used were 𝑊%	and 𝑊!. 

 
Figure 2 Scree plot for Rainfall Features for four stations from 2010-2020 

 
To create a scree plot, the provided eigenvalues from Table 4 and their corresponding principal 
components were use (Eigenvalues: [3.19418, 1.17475, 0.33101, 0.24250, 0.05756] ). Based on the 
scree plot from Figure 2, it is common practice to select the number of principal components where the 
plot levels off or exhibits an "elbow" (Ahmed et al, 2023). In this case, the “elbow" appears at the third 
PC, therefore the first two PCs should be retained which account for 87.3% of the total variance, as a 
valuable reduction in dimensionality. Therefore, it is a fact that the first two PCs accounted for 87.3% of 
total variance of the original variables and simultaneously reduce the data dimension from 5 to 2. 
 
Conduct Principal Component Regression Considering the Dependent Variable  
To generate the Principal Component Regression model equation, this step involved estimating the 
Principal Component Regression coefficients using the Least Square Method (6). Through R Studio 
data processing software, the Principal Component Regression coefficient (θ) can be obtained as Table 
5: 
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Table 5: Coefficient of Batu Embun (PC1& PC2) 
 

Coefficients 

Station Variables Coefficients Standard 
error t-value p-value 

Batu 
Embun 

Constant 5.3326 0.2317 23.014 2.00E-16 
W% -0.5731 0.1295 -4.424 1.40E-05 
W! -0.5392 0.2139 -2.521 0.0123 

 
The data processing programme R Studio can be used to generate the Principal Component Regression 
coefficient (θ), which allows the Principal Component Regression model to be represented as follows: 

Ŷ	 = 	5.3326 − 0.5731𝑊% − 0.5392𝑊! (Batu Embun) 

To find out whether there is a principal component variable (W) contributed to the dependent variable 
(Y), the overall regression coefficient test was carried out. In the coefficient test, each variable's 
estimate, standard error, t-value, and p-value are examined to determine the significance of the 
coefficients. The null hypothesis for each coefficient test is that the corresponding coefficient is equal to 
zero. 
 

If the p-value for the constant term or any of the variables is statistically significant typically with 
a significance level of 0.05, it indicates that the variable in the model significantly contributes to the 
dependent variable. From the Table 5, for the (Constant) term, the estimate is 5.3326 with a standard 
error of 0.2317. The calculated t-value 23.014, and the p-value is less than 2e-16, indicating strong 
evidence to reject the null hypothesis. Therefore, the (Constant) term is statistically significant. 
 

Based on the coefficient test results, both 𝑊% and 𝑊! are statistically significant predictors in the 
linear regression model. Thus, since the principal component variable 𝑊% and 𝑊! contributed to the 
dependent variable Y, the estimated Principal Component Regression model are as follows:  

Ŷ	 = 	5.3326 − 0.5731𝑊% − 0.5392𝑊! (Batu Embun) 

Because the principal component variable was standardised, the derived principal component 
regression model can be changed back into the original variable. The variable that represented the 
independent variable of the data was the principal component variable 𝑊%	and 𝑊!	. However, the model 
only explains 80% amount of the variation in the response variable, which may limit its practical 
usefulness. The final model of the regression model can be denoted by: 

Ŷ	 = 	355.6126 − 1.7594𝑋% + 1.2561𝑋! + 5.025𝑋& + 5.2091𝑋' − 0.4254𝑋( (Batu Embun) 

A regression model at Batu Embun station obtained shows the relationship between Ŷ, 𝑋!, 𝑋&, 
and 𝑋' are unidirectional while the relationship between Ŷ with	𝑋% and 𝑋( is not unidirectional. As the 
value of 𝑋% and 𝑋( increases, the predicted value of Ŷ decreases. 
 
Evaluation of Rainfall Prediction Performance. 
 

Table 6: Evaluation of Rainfall Prediction Performance: MSE and RMSE Values 
Station MSE RMSE 

Batu Embun 13.965 3.737 
 

The RMSE is a measure of the difference between the predicted values and the actual values. 
Lower values of RMSE indicate better predictive performance, as they reflect smaller errors between 
predictions and actual values. From Table 6, the RMSE values for Batu Embun, Muadzam Shah, and 
Temerloh stations are 3.737, 3.537, and 3.280, respectively. These values indicate the average 
difference between the model's predicted values and the actual rainfall values for each station. The 
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RMSE values for all three stations are relatively low, which suggests that the model's predictions are 
relatively accurate. The RMSE of 3.737 for Batu Embun station implies that, on average, the model's 
predictions differ from the actual rainfall values by approximately 3.7 units. Similarly, the RMSE of 3.537 
for Muadzam Shah station suggests an average difference of approximately 3.5 units, and the RMSE of 
3.280 for Temerloh station suggests an average difference of approximately 3.3 units. 
 

Overall, with these relatively low RMSE values, it can be inferred that the model's predictions 
are generally close to the actual rainfall values for these stations, indicating relatively good predictive 
performance. 
 

 
 

Figure 3          An average daily rainfall for four stations from 2010-2020 
 
Conclusion 
 
It can be concluded that a rainfall model for Pahang can be developed using PCR analysis and 
meteorological data from the Department of Meteorology Malaysia with the help of R Studio software. 
The PCR approach reduces the dimensionality of the meteorological variables and extracts the most 
significant components (PC1 and PC2) that account for more than 80% of the data variability. For Batu 
Embun and Muadzam Shah stations, all meteorological variables (temperature, humidity, wind, 
evaporation, and air pressure) showed statistically significant relationships with rainfall, while at 
Temerloh station, only wind and evaporation had a significant relationship. The regression coefficients 
for these variables were negative or positive, indicating the direction and magnitude of their influence 
on rainfall. The regression equations may differ between stations, reflecting the specific characteristics 
and localized influences present at each location. These differences in the regression equations 
highlight the importance of considering the unique dynamics of each station when studying the 
relationship between meteorological variables and rainfall within the state. R Studio can speed up and 
simplify the calculations for Principal Component Regression analysis. 
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