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Abstract 

This work focuses on optimizing production planning in semiconductor manufacturing and identifying 

the most significant parameter affecting cost minimization and demand satisfaction. Using IBM ILOG 

CPLEX Optimization Studio, the study computes optimal solution for the problem and analyses the 

sensitivity of the inventory cost, work in progress cost and backlogging cost parameters using a small 

dataset. Findings reveal that higher backlogging costs lead to increased inventory levels and decreased 

backlogged products, while higher inventory costs result in higher overall production costs and reduced 

inventory levels. Work in progress costs have a minimal effect on total output. Backlogging cost is 

identified as the most sensitive parameter, followed by inventory cost and work in progress cost. 

Variations in work centre capacity significantly impact total costs and backlog quantities, highlighting its 

importance in production planning. Challenges in meeting demand during high-demand periods are 

noted, indicating potential struggles in accommodating sudden spikes in demand. The study suggests 

improvements through sensitivity analysis on parameter interactions, using larger datasets, and 

exploring dynamic demand patterns for multi-objective optimization. 

Keywords: Aggregate production planning; semiconductor manufacturing; sensitivity analysis; linear 

programming; optimization 

 

Introduction 

The expansion of the electronics sector has emerged as a prominent global industry due to 

technological advancements. Its development plays a vital role in generating employment opportunities 

and fostering economic progress, especially in developing and newly industrialized nations. This 

industry encompasses a diverse range of processes, including the fabrication of printed circuit boards, 

assembly of semiconductor devices and printed circuit boards and the creation of finalized electronic 

products [1]. Central to this sector is the production of semiconductors, which serves as its foundational 

core [2]. The semiconductor sector encompasses various enterprises dedicated to the creation and 

development of semiconductors and related devices, such as transistors and integrated circuits. Figure 

1 illustrates the primary four stages involved in semiconductor production. Wafer fabrication and probing 

are commonly termed as front-end processes, while assembly and final testing are recognized as back-

end operations [3]. 

 

 
Figure 1 Main stages in semiconductor manufacturing 
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Semiconductors, also referred to as chips, are vital components present in consumer 

electronics such as laptops, digital cameras, and smartphones. Their significance extends beyond 

powering entertainment systems and functions in automobiles. The automotive industry has faced 

multiple profit warnings due to manufacturers revising down their production and delivery targets owing 

to chip shortages and supply constraints. The current scarcity of semiconductors stems from both 

heightened demand and restricted supply. The surge in demand for technology facilitating remote work 

during the COVID-19 lockdowns in April to June of 2020 sparked a dramatic increase, initiating the 

shortage. This sudden upsurge led to an unparalleled global shortage, temporarily disrupting the supply 

chain [4]. Global demand for private computers and medical equipment has increased over the past 

two years as a result of working and learning from home and medical healthcare services. The demand 

for game consoles and other multimedia accessories, like graphic cards, has also significantly increased 

as a result of social distancing and social exclusion. 

Since chip shortages are present, it is crucial for every original equipment manufacturer (OEM) 

to act right away to ensure they are in the most advantageous position. In the face of widespread 

challenges encountered by multiple companies, there is no straightforward solution to address the 

shortage of semiconductors and the subsequent increase in costs. As a result, to overcome the 

difficulties brought on by the shortage of semiconductors, both short-term and long-term production 

planning strategies are required. Only by improving the planning systems will we be able to overcome 

these challenges [5]. 

This research aims to (1) compute the optimal solution of the problem using generated data 

through IBM ILOG CPLEX Optimization Studio and (2) identify the most significant parameter affecting 

cost minimization and demand satisfaction in the production planning model through sensitivity 

analysis. 

 

Literature Review 

 

Semiconductor manufacturing  

The manufacturing of semiconductors involves an exceptionally intricate and multi-stage process. 

Wafer fabrication facilities employ advanced procedures and cutting-edge machinery, necessitating 

substantial investments reaching billions of dollars to produce integrated circuits [6]. The complexity 

inherent in semiconductor manufacturing stems from expansive facilities housing numerous machines 

and intricate manufacturing characteristics. These facilities often incorporate re-entrant flows, 

interconnecting numerous operational processes along product lines. As a result, this complexity leads 

to extended cycle times, spanning several weeks or even months [7]. 

The semiconductor manufacturing process encompasses three key phases which are the 

design process, the front-end process and the back-end process. The design phase involves IC design 

and photomask design, where each layer necessary for circuit construction requires a corresponding 

photomask. Moving to the front-end process, it includes wafer fabrication, probing, and dicing, where 

multiple semiconductors align on a silicon wafer to create Large Scale Integrated Circuits (LSIs). Finally, 

the back-end process involves packaging, assembly, and final product testing, entailing the separation 

of the semiconductor from the wafer and completing its assembly, fixing terminals, and applying resin 

coatings [8]. Figure 2 offers an overview of these sequential steps in the semiconductor manufacturing 

process. 
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Figure 2 A Brief Overview of Semiconductor Manufacturing Process 

Production planning 

Production planning encompasses diverse tasks like demand forecasting, devising production 

strategies, allocating resources, scheduling production activities, and overseeing inventory levels. Its 

ultimate goal is to efficiently fulfil customer needs, balancing financial efficiency with customer service 

objectives [9]. Financial objectives typically involve managing production and inventory costs, while 

customer service objectives revolve around delivering the correct product, in the specified quantity, at 

the scheduled time and location. Notably, according to Anthony [10] and Salomon [11], production 

planning predicaments can be classified into strategic, tactical and operational problems. 

In the realm of semiconductor manufacturing, production planning studies have primarily 

focused on congestion modelling. Hung and Leachman [12] introduced an automated production 

planning methodology that relies on an iterative combination of linear programming (LP) optimization 

and discrete-event simulation calculations. Similarly, Byrne and Bakir [13] developed a hybrid algorithm 

combining mathematical programming and simulation models to address the Multi Period Multi Product 

(MPMP) problem, ensuring both mathematical optimality and practical feasibility. Byrne and Hossain 

[14] improved a linear programming model, modifying resource requirements and constraints to reduce 

WIP levels and enhance overall flow time, aiming for more efficient production planning. Furthermore, 

Bang and Kim [15] introduced a two-level hierarchical production planning (HPP) method that utilizes 

an iterative approach. 

Albey et al. [16] proposed a clearing function considering product mix effects in multi-product 

systems, while Beraudy et al. [7] introduced diverse production planning models integrating productivity 

and financial objectives. These models offer multifaceted perspectives, emphasizing both operational 

efficiency and financial success by maximizing output, considering profit maximization through net 

present value, and minimizing total costs with fixed lead times. This breadth of approaches illustrates 

the multifaceted nature of production planning in semiconductor manufacturing and its significant impact 

on both operational and financial aspects. 

Asmundsson et al. [17] and Kacar et al. [18] proposed simulation-based studies focusing on 

production planning models with lead time clearing functions, capturing nonlinear workload-throughput 

dynamics in multistage production inventory systems. Their investigations demonstrated the 

effectiveness of these functions in optimizing planning and maximizing financial outcomes. 

Furthermore, Zhang et al. [19] also proposed a multi-fidelity simulation optimization approach to 

efficiently evaluate and select the most effective production plan from a large set, while Bardhan et al. 

[20] introduced an iterative hierarchical model for semiconductor fabrication facilities. The iterative 

approach minimizes the performance gap between assumed and obtained processing rates, resulting 

in improved overall efficiency. 

An increasing number of heuristic methods, such as genetic algorithms, tabu search algorithms 

and ant colony algorithms, has been applied to address semiconductor production planning challenges. 

Given the intricacy and computational complexities inherent in these problems, heuristic approaches 

have proven effective in identifying near-optimal solutions within a reasonable timeframe. Cavalieri et 

al. [21] illustrated the application of genetic algorithms to enhance plant performance within a flexible 

semiconductor manufacturing system. Furthermore, Tang et al. [22] introduced a methodology utilizing 

simulated annealing and genetic algorithms for job scheduling within semiconductor manufacturing 

lines, aiming for improved optimization results. On the other hand, Guo et al. [23] proposed a 

decomposition based classified ant colony optimization algorithm specifically for scheduling 

semiconductor wafer fabrication systems. This approach significantly reduced the time required to 

identify superior solutions in the optimization process.  

Furthermore, Lowe et al. [24] presented a robust optimization approach to production planning 

under yield uncertainty. The sensitivity analysis, based on an industrial dataset, highlighted that yield 

uncertainty leads to increased costs, particularly when occurring later in the supply chain, such as at 

the testing stage. The study demonstrated that robust solutions, despite their higher initial and overall 

costs, effectively prevent significant demand losses compared to deterministic solutions. 
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Aggregate production planning 

Aggregate production planning (APP) is a medium-term capacity planning process that aims to minimize 

costs while determining the optimal production, workforce, and inventory levels needed to meet 

customer demands. It involves establishing the best production and employment plans over a finite 

planning horizon to satisfy the total demand for all products sharing the same limited resources [25]. 

The main goal of aggregate production planning is to meet customer demand while utilizing resources 

such as labour, equipment and inventory efficiently. This involves making decisions about production 

rates, workforce levels, inventory levels, and subcontracting to ensure that the production plan is 

feasible and cost-effective. The APP problem involves formulating a plan that satisfies demand over 

the planning horizon while minimizing costs, considering factors such as production capacity 

constraints, labour constraints, inventory constraints, demand variability and costs. 

Naji et al. [26] introduced an efficiency-based APP model for multi-line manufacturing systems, 

integrating efficiency factors into the planning process. By using Data Envelopment Analysis (DEA) to 

calculate efficiency scores based on specific criteria, the model allocates production quantities to the 

most efficient lines, aiming to optimize both efficiency and production costs. Meanwhile, Marfuah et al. 

[27] presents an APP model that incorporates a dynamic programming (DP) approach to address 

uncertainties in demand, production costs and storage costs. By using artificial neural network 

techniques for demand forecasting and integrating fuzzy logic into the DP framework, the model aims 

to meet consumer demand and minimize total costs during the planning period. 

 

Research data 

The data in this study is randomly generated. Table 1, Table 2 and Table 3 show the dataset used in 

this study. This data will be used as the baseline dataset. 

 

Table 1: Product and work centre information 

Product P1, P2, P3 

Work Centre W1 = {Operation 1, Operation 2}, W2 = {Operation 3},  

W3 = {Operation 4, Operation 5} 

Number of Periods 3 

Work Centre’s Capacity 

(hours) 

W1 = 1000 

W2 = 1000 

W3 = 1000 

Lead Time (days) Operation 1 = 1  

Operation 2 = 1 

Operation 3 = 3 

Operation 4 = 4 

Operation 5 = 0 

Initial Inventory (units) P1 = 0, P2 = 0, P3 = 0 

Initial Backlog (units) P1 = 0, P2 = 0, P3 = 0 

Initial WIP (units) P1 = 0, P2 = 0, P3 = 0 

Inventory Cost/Product P1 = 100, P2 = 100, P3 = 100 

Backlogging Cost/Product P1 = 100, P2 = 100, P3 = 100 

WIP Cost/Operation P1 = 20, P2 = 20, P3 = 20 

 

Table 2: Processing time (hours) 

Operation P1 P2 P3 

1 2 2 2 

2 4 3 8 

3 2 4 3 

4 0 2 4 
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5 0 0 5 

 

Table 3: Product demand (units) 

Period P1 P2 P3 

1 50 50 40 

2 20 30 50 

3 30 30 50 

 

Mathematical model 

The mathematical model used in this study is taken from previous research by Kacar et al. [18]. 

 

Sets: 

𝑃: set of all products 

𝐾: set of all work centres 

𝐿: set of all operations 

𝐿(𝑘): set of operations 𝑙 processed on work centres 𝑘 ∈  𝐾 

 

Indices: 

𝑡: period index 

𝑝: product index 

𝑘: work centre index 

𝑙: operation index 

 

Parameters: 

𝛼𝑝𝑙: Processing time of operation 𝑙 of product 𝑝 

𝐶𝑘: Maximum capacity of work centre 𝑘 in units of products 

𝐿𝑇𝑙: Lead time of operation 𝑙 ∈ 𝐿 

𝐷𝑝𝑡: Demand of product 𝑝 at the end of period 𝑡 

ℎ𝑝𝑡: Unit inventory cost of product 𝑝 at the end of period 𝑡 

𝑏𝑝𝑡: Unit backlogging cost of product 𝑝 at the end of period 𝑡 

𝑤𝑝𝑙: Unit work in progress cost of product 𝑝 at the end of operation 𝑙 

 

Decision variables: 

𝑋𝑝𝑙𝑡: Quantity of product 𝑝 released in period 𝑡 to operation 𝑙 

𝑋𝑝1𝑡 = 𝑋𝑝𝑡
𝑖𝑛: Quantity of product 𝑝 released into first station in the line at period 𝑡  

𝑌𝑝𝑙𝑡: Quantity of product 𝑝 completing its operation 𝑙 at period 𝑡 

𝑌𝑝𝐿𝑡 = 𝑌𝑝𝑡
𝑜𝑢𝑡: Output quantity of product 𝑝 at period 𝑡 

𝑊𝑝𝑙𝑡 : Work in progress of product 𝑝, at operation 𝑙 at the end of period 𝑡 

𝐼𝑝𝑡: Inventory level of product 𝑝 at the end of period 𝑡 

𝐵𝑝𝑡: Backlogging level of product 𝑝 at the end of period 𝑡 

Model: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑤𝑝𝑙𝑊𝑝𝑙𝑡

𝑇

𝑡=1𝑙∈𝐿𝑝∈𝑃

+ ∑ ∑(ℎ𝑝𝑡𝐼𝑝𝑡 + 𝑏𝑝𝑡𝐵𝑝𝑡)

𝑇

𝑡=1

 

𝑝∈𝑃

 (1) 

subject to 

                            𝑋𝑝𝑙𝑡 = 𝑌𝑝(𝑙−1)(𝑡)     ∀𝑝 ∈ 𝑃     ∀𝑙 ∈ 𝐿      ∀𝑡 ∈ {1, . . . , 𝑇} (2) 

                            𝑊𝑝𝑙𝑡 = 𝑊𝑝𝑙(𝑡−1) + 𝑋𝑝𝑙𝑡 − 𝑌𝑝𝑙𝑡     ∀𝑝 ∈ 𝑃     ∀𝑙 ∈ 𝐿      ∀𝑡 ∈ {1, . . . , 𝑇} (3) 

                            𝑋𝑝(𝑡−𝐿𝑇𝑙) = 𝑌𝑝𝑙𝑡      ∀𝑝 ∈ 𝑃     ∀𝑙 ∈ 𝐿      ∀𝑡 ∈ {1, . . . , 𝑇} (4) 

𝑌𝑝𝑡 + 𝐼𝑝(𝑡−1)  − 𝐵𝑝(𝑡−1)   −   𝐼𝑝𝑡 + 𝐵𝑝𝑡 = 𝐷𝑝𝑡      ∀𝑝 ∈ 𝑃     ∀𝑡 ∈ {1, . . . , 𝑇} (5) 
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                            ∑ ∑ 𝛼𝑝𝑙𝑌𝑝𝑙𝑡

𝑙∈𝐿(𝑘)𝑝∈𝑃

≤ 𝐶𝑘       ∀𝑘 ∈ 𝐾    ∀𝑡 ∈ {1, . . . , 𝑇} (6) 

                            𝑋𝑝𝑙𝑡 , 𝑌𝑝𝑙𝑡, 𝑊𝑝𝑙𝑡 , 𝐼𝑝𝑡 , 𝐵𝑝𝑡 ≥ 0     ∀𝑝 ∈ 𝑃 ∀𝑙 ∈ 𝐿  ∀𝑡 ∈ {1, . . . , 𝑇} (7) 

The goal of objective function (1) is to minimize the total cost related to inventory, backlogging, 

and work in progress. Equation (2) establishes the relation between the output 𝑋𝑝𝑙𝑡 of one operation 

and the input 𝑌𝑝𝑙𝑡  of the subsequent operation. Equation (3) ensures the work in progress balance 

across the time horizon for each operation. The fixed lead times for each product's operations are 

maintained by Equation (4). Equation (5) encapsulates flow conservation for final products, ensuring 

that demands are met through inventory, current production, or backlogging for future periods. Capacity 

constraints for each work centre are formulated using Equation (6). Equation (7) ensures the non-

negativity of decision variables. 

 

Results and discussion 

 

Baseline solution 

In determining the baseline solution, IBM ILOG CPLEX Optimization Studio is utilized to solve the 

model. Table 4 shows the results obtained from the baseline dataset. 

 

Table 4: Baseline solution 

Total Cost Product Quantity Product Type 
Period, 𝑡 

1 2 3 

5000 

Production Output 

P1 35 35 35 

P2 40 40 40 

P3 45 45 45 

Inventory 

P1 0 0 5 

P2 0 0 10 

P3 5 0 0 

Backlog 

P1 15 0 0 

P2 10 0 0 

P3 0 0 5 

WIP 

P1 0 0 0 

P2 0 0 0 

P3 0 0 0 

 

 Based on the results from Table 4, it is observed that the production system is unable to satisfy 

demands while prioritizing cost minimization. This can be seen by the imbalances in production across 

the three periods. Therefore, there is a need for further improvement in capacity planning and demand 

forecasting in order to meet demands effectively. 

 

Sensitivity analysis on cost parameters 

The sensitivity analysis involved incrementally increasing or decreasing the values of inventory cost, 

backlogging cost and WIP cost, each one at a time, to observe their effects on production decisions 

and overall system performance. 
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                                         (a)                                                                           (b)  

 
(c) 

Figure 3 Effect of cost variations on KPIs 

 

Based on Figure 3(a), when the inventory cost is increased to 200, there is a notable decrease 

in the total inventory product, indicating that higher inventory costs lead to reduced inventory levels. By 

reducing inventory levels, the system can minimize the higher inventory holding costs and optimize the 

overall production costs. Meanwhile, the amount of total backlog increases, suggesting that higher 

inventory costs may result in more products being backlogged due to production limitations. This is 

because the production system reduces the inventory levels to minimize costs, leading to an inability to 

produce enough to meet demand.  

Further increases in inventory cost to 300 and 400 result in no changes on the production 

quantity, inventory, backlog quantities and WIP. This suggests that the production system has reaches 

an optimal configuration, where further increases in inventory costs do not give significant impact. 

However, when the inventory cost reaches 500, there is another notable increase in total backlogs and 

a small decrease in total inventory. This implies that the production system has reach a tipping point, 

leading to a compromise between cost minimization and meeting product demand. As a result, the 

production system has limits in its capacity to adjust to the increasing inventory cost. 

Based on Figure 3(b), when the backlogging cost is incrementally increased to 500, there is 

initially small change in the total inventory, WIP, and backlog products. This indicate that the production 

system is designed to prioritize meeting demand within a reasonable range of backlogging costs, 

without drastically altering the production strategy. However, after the backlogging cost reaches 500, 

the number of inventory products increases significantly, while the total backlog becomes zero. This 

finding indicates that higher backlogging costs encourage the production of more inventory to prevent 

backlog, leading to an increase in inventory levels and a decrease in backlogged products. The 

production system aims to minimize the high penalty associated with backlogged products by ensuring 

that demand can be met from the available inventory. 

Based on Figure 3(c), when WIP cost increases, shows that higher WIP costs do not affect the 

total output of the product, suggesting that the production system can maintain desired output levels 

despite higher costs associated with WIP. Meanwhile, total inventory and backlog remain zero 
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throughout, which implies that the production system is able to balance the production and demand 

effectively. 

After comparing the effects of changes in each cost parameter on production decisions and 

system performance, the analysis shows that the backlogging cost is the most sensitive parameter for 

the production system. The system has made significant adjustments in its inventory and production 

strategies to minimize the high cost associated with backlogged products. In contrast, the production 

system appears to be relatively less sensitive to changes in WIP cost, demonstrating a higher degree 

of flexibility and resilience in maintaining the desired output levels. Lastly, the sensitivity of inventory 

cost falls in between, as the system adjusts inventory levels and experiences a compromise between 

cost minimization and meeting demand when the inventory cost increases significantly. 

 

 

Sensitivity analysis on capacity variations 

 

 
Figure 4 Effect of capacity variations on KPIs 

 

Based on Figure 4, among all the variations in work centre capacities for W1, W2, and W3, only the 

decrease in W1's capacity by 20% had a notable impact on the production planning model. This 

decrease in capacity led to an increase in total cost and backlog quantities, suggesting that work centre 

W1 plays a critical role as a bottleneck in the production process.   

The results highlight the importance of aligning work centre capacities with product demand. In 

scenarios where demand exceeds capacity, such as this case with W1, production efficiency is 

compromised. Therefore, optimizing the capacity of work centre W1, and potentially other bottleneck 

areas identified through sensitivity analysis, is crucial for improving overall production efficiency and 

meeting demand requirements. 

 

Sensitivity analysis on demand variations 

 

 
Figure 5 Effect of demand variations on KPIs 
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Based on Figure 5, the analysis shows that the production outputs increase to meet the higher demand, 

indicating that the production system can adjust production levels accordingly. However, challenges 

arise during high-demand periods, as evidenced by increased backlog quantities. This suggests that 

the production system may struggle to cope with sudden spikes in demand, leading to backlogs of 

unfulfilled orders. 

 

Conclusion 

In summary, semiconductor production planning is crucial in decision-making and production strategy, 

as it directly impacts the efficient utilization of resources and overall operational efficiency. 

Understanding each aspect of production planning is essential for optimizing resource allocation, 

minimizing costs and meeting demand effectively. Backlogging cost is found as the most sensitive 

parameter to cost variations, highlighting the need for adjusting production planning strategies in 

response to changes in backlogging cost. The results also highlight the importance of aligning work 

centre capacities with product demand to prevent potential bottlenecks. During high-demand periods, 

the production system may find it challenging to manage sudden demand spikes, resulting in backlogs 

of unfulfilled orders. However, this study has limited scope of data and the model used may have 

simplifications and assumptions that do not fully capture the complexities of semiconductor 

manufacturing processes. Therefore, future research can explore using larger and more diverse 

datasets that better capture the complexity and variability of real-world production environments. Future 

research can also improve on conducting sensitivity analysis on potential interactions between different 

parameters to give better insights. 
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