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Abstract 

Groundwater pollution can happen when human activities, factories, graveyards, mining waste, and 

other factors contaminate underground water. In order to clean up the contaminated area, it is very 

important to understand how the pollutants move in the groundwater. Based on the mathematical 

model, this study focuses on finding an analytical solution to a one-dimensional advection-diffusion 

equation (ADE) representing the pollutant transport to understand how pollutants spread in two different 

distinct geological formations namely sand and clay. The pollutant concentration is considered in liquid 

as well as in solid phases using the Laplace transform method. The graphical interpretation analyzes 

the behavior of the concentration distribution on solute transport such as the contaminant concentration 

distribution with different geological formations, diffusion parameter values, velocity parameter values 

and time values. It is found that the pollutant moves faster in sand instead of clay. Also, the pollutant 

moves faster when the seepage velocity and dispersion coefficient are increased while the pollutant 

moves slower as time increases. The findings of this research can be invaluable as an initial predictive 

tool for the planning of groundwater resource management and remediation projects.  
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Introduction 

Groundwater is a crucial source of water supply, defined as water beneath the land surface, typically 

found in aquifers composed of sedimentary rocks like sands, clays, gravels, sandstones, and 

limestones. Groundwater quality is influenced by geological formations, structures, chemical 

weathering, and contamination. Contaminants in groundwater vary widely, including physical, inorganic, 

organic chemicals, and radioactive substances [1]. Ensuring a safe water supply requires effective 

remediation strategies and mathematical models play a crucial role in understanding pollutant 

movement, predicting migration patterns, and assessing risks. These models, such as the Advection-

Difussion Equation (ADE), are essential for developing strategic plans to mitigate groundwater 

contamination challenges. 

 Diffusion is a molecule that travels from a high concentration location to a low concentration area 

[2] while advection refers to solute displacement along the main flow direction, while dispersion involves 

solute spreading in longitudinal and transversal directions due to complex pore structures. The ADE, 

based on mass conservation and Fick's law of diffusion states that diffusion rate is proportional to the 

concentration gradient and is essential for modeling hydrodynamic dispersion in porous media [3]. 

Hydrodynamic dispersion is the term used to describe the dispersing of solutes or pollutants in the fluid 

as a result [4]. Mechanical dispersion and diffusion combine in groundwater flow to create hydrodynamic 

dispersion. Mechanical dispersion reflects the fact that not everything in the porous medium travels at 

the average water flow speed. Some paths are faster, some slower, some longer, some shorter. 

 Previously, other research papers have been conducted to solve ADE, such as analytical 

solutions for the (ADE) with variable dispersion coefficient and velocity are derived using the Green’s 

function method (GFM) [7] while [8] concentrated to a one-dimensional model for pollutant transport in 
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both homogeneous and heterogeneous semi-infinite groundwater reservoirs of these coefficients 

reflects the heterogeneity of hydrogeological media while considering Dirichlet-type and Nuemann-type 

boundary conditions. Other than that, a numerical approach for modeling the advection-diffusion 

equation, employing a method that combines Laplace transform (LT) and Chebyshev spectral 

collocation method (CSCM) [9] while a numerical algorithm based are developed on the Laplace 

transform and the numerical inverse Laplace transform for numerical modeling of diffusion 

problems[10]. Next, the solutions for the (ADE) with temporal coefficients are derived for a pollutant's 

point source moving linearly along the axis of a one-dimensional semi-infinite domain [11] and an 

analytical solution is achieved for the two-dimensional ADE with variable coefficients in a semi-infinite, 

heterogeneous porous medium [12]. 

 This study aims to understand pollutant transport in sand and clay geological formations. The 

objectives are to develop a one-dimensional ADE model for groundwater contamination considering 

zero production and first-order decay, derive an analytical solution using the Laplace transform method, 

and analyze concentration behavior for varying diffusion and velocity parameters. Basically, this study 

is conducted based on the work by Singh et al.[4].  

 

Mathematical Model and Its Analytical Solution  

From Singh et al. [4], the governing equation consists of ADE and the source term is in the form:  

 
𝜕𝑐

𝜕𝑡
+

𝜌(1−𝑛)

𝑛

𝜕𝐹

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2 − 𝑢
𝜕𝑐

𝜕𝑥
− 𝜇𝑐 + 𝛾 ,       (1) 

where 𝐷 is a longitudinal dispersion coefficient, 𝑐 is the volume-averaged dispersing solute 

concentration in the liquid phase, 𝐹 is the volume-averaged dispersing solute concentration in the solid 

phase, 𝑢 is the unsteady uniform downward pore seepage velocity, 𝑥 is a longitudinal direction of flow,  

𝑡 is a time, 𝛾 is the zero production rate coefficient for solute production in the liquid phase, 𝜇 is the first-

order decay rate coefficient in the liquid phase, 𝜌 is the bulk density of the porous medium and 𝑛 is the 

porosity of geological formation.  

 Contaminant goes from solid phase into liquid phase under the linear isotherm condition. 

 

   𝐹 = 𝐾𝑑𝑐,         (2) 

where 𝐾𝑑   is the distribution coefficient. Distribution coefficient can be defined as the concentration 

adsorbed by the solid phase to the liquid phase into groundwater reservoir. 

In this research, the growth of solute along the space initially was a linear combination of the 

initial concentration taken into consideration. The initial condition can be written as:  

𝑐(𝑥, 0) = 𝑐𝑖 +
𝛾𝑥

𝑢
                𝑥 > 0, 𝑡 = 0.                             (3) 

Mixed type of boundary condition in the splitting time domain at the source due to increasing 

human activity at the earth's surface and the solute concentration in groundwater increases in time. 

Along the boundary conditions as below can be written as  

                          −𝐷
𝜕𝑐

𝜕𝑥
+ 𝑢𝑐 = 𝑢𝑐0            𝑥 = 0, 0 < 𝑡 < 𝑡0  ,                         

                             −𝐷
𝜕𝑐

𝜕𝑥
+ 𝑢𝑐 = 0                𝑥 = 0, 𝑡 > 0                                     (4)  

Due to no mass flow at the other end of the domain, a flux type boundary condition can be written as  

     
𝜕𝑐

𝜕𝑥
= 0,                𝑥 = 𝐿 , 𝑡 > 0.                                 (5)
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Using Equation (2), Equation (1) can be written as:  

𝑅
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝑑𝑥2 − 𝑢
𝜕𝑐

𝜕𝑥
− 𝜇𝑐 + 𝛾,                (6) 

where 

𝑅 = 1 +
1−𝑛

𝑛
𝜌𝐾𝑑             (7) 

From the dispersion theory, dispersion is directly proportional to seepage velocity which can be 

written as 𝐷 ∝ 𝑢. Hence, 𝐷 = 𝐴𝑢, where, A is a constant that depends upon the pore geometry of the 

groundwater. By letting a temporally dependent coefficient, the coefficients can be written as  

𝑢 = 𝑢0𝜓(𝑚𝑡), 

𝐷 = 𝐷0𝜓(𝑚𝑡), 

𝜇 = 𝜇0𝜓(𝑚𝑡), 

𝛾 = 𝛾0𝜓(𝑚𝑡), 

where  𝑢0 and 𝐷0 is the initial seepage velocity and initial dispersion coefficient respectively while 𝜇0 

and 𝛾0 is the initial first-order decay rate coefficient and initial zero-order production rate coefficient for 

solute production in the liquid phase respectively and  𝜓(𝑚𝑡) is a non-dimensional expression where is 

the flow resistance coefficient, the Equation (6) can be expressed as  

𝑅

𝜓(𝑚𝑡)
 

𝜕𝑐

𝜕𝑡
= 𝐷0

𝜕2𝑐

𝜕𝑥2 − 𝑢0
𝜕𝑐

𝜕𝑥
− 𝜇0𝑐 + 𝛾0.                       (8) 

A new time variable 𝑇∗ 

𝑇∗ = ∫ 𝜓(𝑚𝑡)  𝑑𝑡                                               (9) 

is introduced and Equation (8) can be expressed as 

𝑅 
𝜕𝑐

𝜕𝑇∗ = 𝐷0
𝜕2𝑐

𝜕𝑥2 − 𝑢0
𝜕𝑐

𝜕𝑥
− 𝜇0𝑐 + 𝛾0 .                             (10) 

The following non-dimensional variables are introduced  

𝐶 =
𝑐

𝑐0
; 𝑋 =

𝑛𝑥

𝐿
 ; 𝑇 =

𝑇∗𝑛𝑢0

𝐿
; 𝑇𝑝 =

𝑛𝑢0𝑡0

𝐿
 ;  𝜇∗ =

𝜇0𝐿

𝑛𝑢0
;  𝛾∗ =

𝛾0𝐿

𝑛𝑐0𝑢0
       (11)  

which reduce Equation (10) into  

𝑅
𝜕𝐶

𝜕𝑡
=

1

𝑃𝑒

𝜕2𝐶

𝜕𝑋2 −
𝜕𝐶

𝜕𝑋
−  𝜇∗𝐶 + 𝛾∗,                     (12) 

where 

                   𝑃𝑒 =
𝐿𝑢0

𝑛𝐷0
.                              (13) 

While the initial and boundary conditions (3) to (5) becomes 

𝐶(𝑋, 𝑇) =
𝑐𝑖

𝑐0
+ 𝛾∗𝑋 .           𝑋 > 0, 𝑇 = 0                     (14) 

   −
1

𝑃𝑒

𝜕𝐶

𝜕𝑋
+ 𝐶 = 1                𝑋 = 0, 0 ≤ 𝑇 ≤ 𝑇𝑝              

−
1

𝑃𝑒

𝜕𝐶

𝜕𝑋
+ 𝐶 = 0                𝑋 = 0, 𝑇 > 𝑇𝑝                                   (15) 
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𝜕𝐶

𝜕𝑋
= 0                     𝑋 = 𝑛, 𝑇 > 0.                           (16) 

The transformation is used to reduce equation (12) to become 

𝐶(𝑋, 𝑇) = 𝐾(𝑋, 𝑇) exp [
𝑋

2
𝑃𝑒 −

1

𝑅
(

𝑃𝑒

4
+ 𝜇∗) 𝑇] +

𝛾∗

𝜇∗               (17) 

  𝑅
𝜕𝐾

𝜕𝑇
=

1

𝑃𝑒

𝜕2𝐾

𝜕𝑋2               (18) 

Meanwhile, from transformation (17), the initial condition in (14) and boundary condition in (15) and (16) 

become  

                                       𝐶(𝑋, 0) = (
𝑐𝑖

𝑐0

−
𝛾∗

𝜇∗
+ 𝛾∗𝑋) 𝑒−

𝑋
2

𝑃𝑒      𝑋 > 0, 𝑇 = 0                                                           (19)   

                          −
1

𝑃𝑒

𝜕𝐾

𝜕𝑋
+

𝐾

2
= (1 −

𝛾∗

𝜇∗
) 𝑒[

1
𝑅

(
𝑃𝑒
4

+𝜇∗)𝑇]     𝑋 = 0, 0 < 𝑇 ≤ 𝑇𝑝                                                     (20)  

                          −
1

𝑃𝑒

𝜕𝐾

𝜕𝑋
+

𝐾

2
= (−

𝛾∗

𝜇∗
) 𝑒[

1
𝑅

(
𝑃𝑒
4

+𝜇∗)𝑇]     𝑋 = 0, 𝑇 > 𝑇𝑝                                                                 (21) 

                          
𝜕𝐾

𝜕𝑋
= −

𝐾

2
𝑃𝑒      𝑋 = 𝑛, 𝑇 ≥ 0                                                                                                           (22) 

Taking Laplace integral transform technique 

𝐾(𝑋, 𝑃) = 𝛽1𝑒√𝑃𝑒𝑅𝑃𝑋 + 𝛽2𝑒√𝑃𝑒𝑅𝑃𝑋 − (
𝛾∗

𝜇∗ −
𝑐𝑖

𝑐0
)

1

(𝑃−
𝑃𝑒

4𝑅
)
 𝑒−

𝑃𝑒

2
𝑋 + 𝛾∗ (𝑋 −

1

𝑅(𝑃−
𝑃𝑒

𝑅
)
) 𝑒−

𝑃𝑒

2
𝑋 ,                 (23)   

 where,  

𝐾(𝑋, 𝑃) = ∫ 𝐾(𝑋, 𝑇)𝑒−𝑃𝑇∞

0
 𝑑𝑇, 𝛽1 𝑎𝑛𝑑 𝛽2  are the arbitrary constants.  

𝛽2 = 𝐴 + 𝐵 + 𝐷 + 𝐸  

𝛽1 = √
𝑅

𝑃𝑒

𝛾∗

𝑅

1

(𝑃−
𝑃𝑒

4𝑅
)(√𝑃+𝜉)

𝑒−
𝑃𝑒

2
𝑛𝑒−√𝑃𝑒𝑅𝑃𝑛 + 𝛽2 [1 −

2𝜉

(√𝑃+𝜉)
] 𝑒−2√𝑃𝑒𝑅𝑃𝑛  

where, 

𝜉 =
1

2
√

𝑃𝑒

𝑅
 𝑎𝑛𝑑 𝑄 = −

1

𝑅
(

𝑃𝑒

4
+ 𝜇∗)   

 The analytical solution based on the paper by Singh et al. [4] can be followed as 

𝐶(𝑋, 𝑇) = [𝐹(𝑋, 𝑇) + 𝐺(𝑋, 𝑇) + 𝐻(𝑋, 𝑇) + 𝐼(𝑋, 𝑇) + 𝐽(𝑋, 𝑇) + 𝑀(𝑋, 𝑇) + 𝑁(𝑋, 𝑇) + 𝑃(𝑋, 𝑇) + 𝑆(𝑋, 𝑇)

+ 𝑈(𝑋, 𝑇)] exp [
𝑋

2
𝑃𝑒 −

1

𝑅
(

𝑃𝑒

4
+ 𝜇∗) 𝑇] +

𝛾∗

𝜇∗
,

0 < 𝑇 ≤ 𝑇𝑝                                                                                                                                  (24) 

𝐶(𝑋, 𝑇) = [𝐹(𝑋, 𝑇) + 𝐺(𝑋, 𝑇) + {𝐻(𝑋, 𝑇) − 𝐻(𝑋, 𝑇 − 𝑇𝑝)} + 𝐼(𝑋, 𝑇) + 𝐽(𝑋, 𝑇) + 𝑀(𝑋, 𝑇)

+ {𝑁(𝑋, 𝑇) − 𝑁(𝑋, 𝑇 − 𝑇𝑝)} + 𝑃(𝑋, 𝑇) + 𝑆(𝑋, 𝑇) + 𝑈(𝑋, 𝑇)] exp [
𝑋

2
𝑃𝑒 −

1

𝑅
(

𝑃𝑒

4
+ 𝜇∗) 𝑇]

+
𝛾∗

𝜇∗
,    𝑇 > 𝑇𝑝                                                                                                                               (25) 

where 
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𝐹(𝑋, 𝑇) = −
𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)
𝐶1 −

1

2(𝑎−𝜉)
𝐷1} −

𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 𝜉

(𝑎2−𝜉2)
exp{𝜉2𝑇 + 𝜉𝑍} 𝑒𝑟𝑓𝑐 {

𝑍

2√𝑇
+ 𝜉√𝑇}          

  𝐶1 = exp(𝑎2𝑇 − 𝑎𝑍) 𝑒𝑟𝑓𝑐 (
𝑍

2√𝑇
− 𝑎√𝑇)    

  𝐷1 = exp(𝑎2𝑇 + 𝑎𝑍) 𝑒𝑟𝑓𝑐 (
𝑍

2√𝑇
+ 𝑎√𝑇)  

  𝑍 = 𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒  

   𝑎 =
1

2
√

𝑃𝑒

𝑅
         

𝐺(𝑋, 𝑇) = 𝐺1(𝑋, 𝑇) + 𝐺2(𝑋, 𝑇) − 𝐺3(𝑋, 𝑇) + 𝐺4(𝑋, 𝑇)   

𝐺1(𝑋, 𝑇) = −
𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)
𝐶2 −

1

2(𝑎−𝜉)
𝐷2} −

𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛  

𝜉

(𝑎2−𝜉2)
exp{𝜉2𝑇 + 𝜉𝑌} 𝑒𝑟𝑓𝑐 {

𝑌

2√𝑇
+ 𝜉√𝑇}  

𝐺2(𝑋, 𝑇) =
4𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)2 𝐶2 +
1

2(𝑎−𝜉)2 𝐷2} +
4𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛  

2𝜉𝑇

(𝑎2−𝜉2)
𝐴   −

4𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

𝑎2+𝜉2

(𝑎2−𝜉2)2 +

2𝜉2𝑇+𝜉𝑌

(𝑎2−𝜉2)
} exp{𝜉2𝑇 + 𝜉𝑌}   𝑒𝑟𝑓𝑐 {

𝑌

2√𝑇
+ 𝜉√𝑇}      

  𝐶2 = exp(𝑎2𝑇 − 𝑎𝑌) 𝑒𝑟𝑓𝑐 (
𝑌

2√𝑇
− 𝑎√𝑇)   

   𝐷2 = exp(𝑎2𝑇 + 𝑎𝑌) 𝑒𝑟𝑓𝑐 (
𝑌

2√𝑇
+ 𝑎√𝑇)       

 𝐴 =
1

√𝜋𝑇
exp (−

𝑌2

4𝑇
)    

     𝑌 = 3𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒     

𝐺3(𝑋, 𝑇) =
𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)
𝐶3 −

1

2(𝑎−𝜉)
𝐷3} +

𝛾∗

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛  

𝜉

(𝑎2−𝜉2)
exp{𝜉2𝑇 + 𝜉𝜔} 𝑒𝑟𝑓𝑐 {

𝜔

2√𝑇
+ 𝜉√𝑇}   

𝐺4(𝑋, 𝑇) =
8𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)2 𝐶3 +
1

2(𝑎−𝜉)2 𝐷3} +
8𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛  

2𝜉𝑇

(𝑎2−𝜉2)
𝐴1  −

8𝛾∗𝜉

√𝑃𝑒𝑅
 𝑒−

𝑃𝑒

2
𝑛 {

𝑎2+𝜉2

(𝑎2−𝜉2)2 +

2𝜉2𝑇+𝜉𝜔

(𝑎2−𝜉2)
} exp{𝜉2𝑇 + 𝜉𝜔}   𝑒𝑟𝑓𝑐 {

𝜔

2√𝑇
+ 𝜉√𝑇}  

  𝐶3 = exp(𝑎2𝑇 − 𝑎𝜔) 𝑒𝑟𝑓𝑐 (
𝜔

2√𝑇
− 𝑎√𝑇)  

  𝐷3 = exp(𝑎2𝑇 + 𝑎𝜔) 𝑒𝑟𝑓𝑐 (
𝜔

2√𝑇
+ 𝑎√𝑇)       

  𝐴1 =
1

√𝜋𝑇
exp (−

𝜔2

4𝑇
)            

   𝜔 = 5𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒            

  𝐻(𝑋, 𝑇) = 𝐻1(𝑋, 𝑇) − 𝐻2(𝑋, 𝑇) + 𝐻3(𝑋, 𝑇)  − 𝐻4(𝑋, 𝑇)   

  𝐻1(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) (𝐶4 + 𝐷4) 

𝐻2(𝑋, 𝑇) =  √
𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) 2𝜉 {
1

2(√𝑄+𝜉)
𝐶4 −

1

2(√𝑄−𝜉)
𝐷4} + 2𝜉√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗)
𝜉

𝑄−𝜉2 exp{𝜉2𝑇 + 𝜉𝑌1}  𝑒𝑟𝑓𝑐 {
𝑌1

2√𝑇
+

𝜉√𝑇}    

  𝐶4 = exp(𝑄𝑇 − √𝑄𝑌1) 𝑒𝑟𝑓𝑐 (
𝑌1

2√𝑇
− √𝑄𝑇)  



Izlan & Mat Isa . (2024) Proc. Sci. Math. 21:83-94 

 88 

  𝐷4 = exp(𝑄𝑇 + √𝑄𝑌1) 𝑒𝑟𝑓𝑐 (
𝑌1

2√𝑇
+ √𝑄𝑇)   

   𝑌1 = 2𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒            

 𝐻3(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) (𝐶5 + 𝐷5)  

𝐻4(𝑋, 𝑇) =  6𝜉√
𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) {
1

2(√𝑄+𝜉)
𝐶5 −

1

2(√𝑄−𝜉)
𝐷5}  + 6𝜉√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗)
𝜉

𝑄−𝜉2 exp{𝜉2𝑇 + 𝜉𝜔1}  𝑒𝑟𝑓𝑐 {
𝜔1

2√𝑇
+

𝜉√𝑇}      

  𝐶5 = exp(𝑄𝑇 − √𝑄𝜔1) 𝑒𝑟𝑓𝑐 (
𝜔1

2√𝑇
− √𝑄𝑇)    

  𝐷5 = exp(𝑄𝑇 + √𝑄𝜔1) 𝑒𝑟𝑓𝑐 (
𝜔1

2√𝑇
+ √𝑄𝑇)  

 𝜔1 = 4𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒  

𝑄 =
1

𝑅
(

𝑃𝑒

4
+ 𝜇∗)   

 𝐼(𝑋, 𝑇) = 𝐼1(𝑋, 𝑇) − 𝐼2(𝑋, 𝑇) + 𝐼3(𝑋, 𝑇) − 𝐼4(𝑋, 𝑇)  

  𝐼1(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) (𝐶6 + 𝐷6)   

  𝐼2(𝑋, 𝑇) =  2𝜉√
𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) {
1

2(𝑎+𝜉)
𝐶6 −

1

2(𝑎−𝜉)
𝐷6} + 2𝜉√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗)
𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 + 𝜉𝑌1}  𝑒𝑟𝑓𝑐 {
𝑌1

2√𝑇
+

𝜉√𝑇}    

    𝐶6 = exp(𝑎2𝑇 − 𝑎𝑌1) 𝑒𝑟𝑓𝑐 (
𝑌1

2√𝑇
− 𝑎√𝑇)  

    𝐷6 = exp(𝑎2𝑇 + 𝑎𝑌1) 𝑒𝑟𝑓𝑐 (
𝑌1

2√𝑇
+ 𝑎√𝑇)  

    𝑌1 = 2𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒  

  𝐼3(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) (𝐶7 + 𝐷7)   

𝐼4(𝑋, 𝑇) =  6𝜉√
𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) {
1

2(𝑎+𝜉)
𝐶7 −

1

2(𝑎−𝜉)
𝐷7}  + 6𝜉√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗)
𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 + 𝜉𝜔1}  𝑒𝑟𝑓𝑐 {
𝜔1

2√𝑇
+

𝜉√𝑇}   

  𝐶7 = exp(𝑎2𝑇 − 𝑎𝜔1) 𝑒𝑟𝑓𝑐 (
𝜔1

2√𝑇
− 𝑎√𝑇)  

  𝐷7 = exp(𝑎2𝑇 + 𝑎𝜔1) 𝑒𝑟𝑓𝑐 (
𝜔1

2√𝑇
+ 𝑎√𝑇)  

 𝜔1 = 4𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒  

   𝐽(𝑋, 𝑇) = 𝐽1(𝑋, 𝑇) − 𝐽2(𝑋, 𝑇) − 𝐽3(𝑋, 𝑇) − 𝐽4(𝑋, 𝑇) + 𝐽5(𝑋, 𝑇) − 𝐽6(𝑋, 𝑇)  − 𝐽7(𝑋, 𝑇) + 𝐽8(𝑋, 𝑇)  

 𝐽1(𝑋, 𝑇) = −
1

2

𝛾∗

√𝑅𝑃𝑒
(𝐶6 + 𝐷6)  

𝐽2(𝑋, 𝑇) =  −𝛾∗ 2𝜉

√𝑅𝑃𝑒
 {

1

2(𝑎+𝜉)
𝐶6 −

1

2(𝑎−𝜉)
𝐷6}    − 𝛾∗ 2𝜉

√𝑅𝑃𝑒

𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 + 𝜉𝑌1}  𝑒𝑟𝑓𝑐 {
𝑌1

2√𝑇
+ 𝜉√𝑇}      



Izlan & Mat Isa . (2024) Proc. Sci. Math. 21:83-94 

 89 

 𝐽3(𝑋, 𝑇) =  −
𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 − 𝑌1)𝐶6} −

𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 + 𝑌1)𝐷6}      

  𝐽4(𝑋, 𝑇) =  
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 2𝜉 

1−(𝑎+𝜉)(2𝑎𝑇−𝑌1)

4𝑎(𝑎+𝜉)2 𝐶6 +
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 2𝜉 

(2𝑎𝑇+𝑌1)(𝑎−𝜉)−1

4𝑎(𝑎−𝜉)2 𝐷6 −
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 2𝜉

𝑇

𝑎2−𝜉2 𝐴2    +

𝛾∗

𝑅
√

𝑃𝑒

𝑅
2𝜉

𝜉

(𝑎2−𝜉2)2  exp(𝜉2𝑇 + 𝜉𝑌1) 𝑒𝑟𝑓𝑐 {
𝑌1

2√𝑇
+ 𝜉√𝑇}  

  𝐽5(𝑋, 𝑇) = −
1

2

𝛾∗

√𝑅𝑃𝑒
(𝐶7 + 𝐷7)   

𝐽6(𝑋, 𝑇) =  −𝛾∗ 6𝜉

√𝑅𝑃𝑒
 {

1

2(𝑎+𝜉)
𝐶7 −

1

2(𝑎−𝜉)
𝐷7}  − 𝛾∗ 6𝜉

√𝑅𝑃𝑒

𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 + 𝜉𝜔1}  𝑒𝑟𝑓𝑐 {
𝜔1

2√𝑇
+ 𝜉√𝑇}     

 𝐽7(𝑋, 𝑇) =  −
𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 − 𝜔1)𝐶7} −

𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 + 𝜔1)𝐷7}     

 𝐽8(𝑋, 𝑇) =  6𝜉
𝛾∗

𝑅
√

𝑃𝑒

𝑅
  

1−(𝑎+𝜉)(2𝑎𝑇−𝜔1)

4𝑎(𝑎+𝜉)2 𝐶7 + 6𝜉
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 2𝜉 

(2𝑎𝑇+𝜔1)(𝑎−𝜉)−1

4𝑎(𝑎−𝜉)2 𝐷7 − 6𝜉
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 

𝑇

𝑎2−𝜉2 𝐴3    +

6𝜉
𝛾∗

𝑅
√

𝑃𝑒

𝑅

𝜉

(𝑎2−𝜉2)2  exp(𝜉2𝑇 + 𝜉𝜔1) 𝑒𝑟𝑓𝑐 {
𝜔1

2√𝑇
+ 𝜉√𝑇}   

   𝐴2 =
1

√𝜋𝑇
exp (−

𝑌1
2

4𝑇
)   

   𝐴3 =
1

√𝜋𝑇
exp (−

𝜔1
2

4𝑇
)  

  𝑀(𝑋, 𝑇) = 𝑀1(𝑋, 𝑇) + 𝑀2(𝑋, 𝑇) − 𝑀3(𝑋, 𝑇) + 𝑀4(𝑋, 𝑇)  

 𝑀1(𝑋, 𝑇) = −
𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)
𝐶8 −

1

2(𝑎−𝜉)
𝐷8} −

𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛 𝜉

(𝑎2−𝜉2)
𝑒𝑥𝑝 {𝜉2𝑇 + 𝜉𝜎}𝑒𝑟𝑓𝑐 {

𝜎

2√𝑇
+ 𝜉√𝑇}  

𝑀2(𝑋, 𝑇) =
𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)2 𝐶8 +
1

2(𝑎−𝜉)2 𝐷8} +
𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛  

2𝜉𝑇

(𝑎2−𝜉2)
𝐴4  −

𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛 {

𝑎2+𝜉2

(𝑎2−𝜉2)2 +

2𝜉2𝑇+𝜉𝜎

(𝑎2−𝜉2)
} exp{𝜉2𝑇 + 𝜉𝜎}  𝑒𝑟𝑓𝑐 {

𝜎

2√𝑇
+ 𝜉√𝑇}  

𝑀3(𝑋, 𝑇) =
𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)
𝐶9 −

1

2(𝑎−𝜉)
𝐷9} +

𝛾∗

√𝑅𝑃𝑒
 𝑒−

𝑃𝑒

2
𝑛  

𝜉

(𝑎2−𝜉2)
𝑒𝑥𝑝 {𝜉2𝑇 + 𝜉𝜓}𝑒𝑟𝑓𝑐 {

𝜓

2√𝑇
+ 𝜉√𝑇}  

𝑀4(𝑋, 𝑇) =
𝛾∗

√𝑅𝑃𝑒
6𝜉𝑒−

𝑃𝑒

2
𝑛 {

1

2(𝑎+𝜉)2 𝐶9 +
1

2(𝑎−𝜉)2 𝐷9} +
𝛾∗

√𝑅𝑃𝑒
6𝜉 𝑒−

𝑃𝑒

2
𝑛  

2𝜉𝑇

(𝑎2−𝜉2)
𝐴5  −

𝛾∗

√𝑅𝑃𝑒
6𝜉 𝑒−

𝑃𝑒

2
𝑛 {

𝑎2+𝜉2

(𝑎2−𝜉2)2 +

2𝜉2𝑇+𝜉𝜓

(𝑎2−𝜉2)
} exp{𝜉2𝑇 + 𝜉𝜓}   𝑒𝑟𝑓𝑐 {

𝜓

2√𝑇
+ 𝜉√𝑇}    

  𝐶8 = exp(𝑎2𝑇 − 𝑎𝜎) 𝑒𝑟𝑓𝑐 (
𝜎

2√𝑇
− 𝑎√𝑇)  

    𝐷8 = exp(𝑎2𝑇 + 𝑎𝜎) 𝑒𝑟𝑓𝑐 (
𝜎

2√𝑇
+ 𝑎√𝑇)  

   𝐶9 = exp(𝑎2𝑇 − 𝑎𝜓) 𝑒𝑟𝑓𝑐 (
𝜓

2√𝑇
− 𝑎√𝑇)  

    𝐷9 = exp(𝑎2𝑇 + 𝑎𝜓) 𝑒𝑟𝑓𝑐 (
𝜓

2√𝑇
+ 𝑎√𝑇)  

    𝜎 = 𝑛√𝑅𝑃𝑒 + 𝑋√𝑅𝑃𝑒      

 𝜓 = 3𝑛√𝑅𝑃𝑒 − 𝑋√𝑅𝑃𝑒   

 𝐴4 =
1

√𝜋𝑇
exp (−

𝜎2

4𝑇
)   
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 𝐴5 =
1

√𝜋𝑇
exp (−

𝜎2

4𝑇
)  

𝑁(𝑋, 𝑇) = 𝑁1(𝑋, 𝑇) + 𝑁2(𝑋, 𝑇) − 𝑁3(𝑋, 𝑇)  

 𝑁1(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) (𝐶10 + 𝐷10)  

  𝐶10 = exp(𝑄𝑇 − 𝑋√𝑅𝑃𝑒𝑄) 𝑒𝑟𝑓𝑐 (
𝑋

2
√

𝑅𝑃𝑒

𝑇
− √𝑄𝑇)   

 𝐷10 = exp(𝑄𝑇 + 𝑋√𝑅𝑃𝑒𝑄) 𝑒𝑟𝑓𝑐 (
𝑋

2
√

𝑅𝑃𝑒

𝑇
+ √𝑄𝑇)  

 𝑁2(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) (𝐶11 + 𝐷11)  

𝑁3(𝑋, 𝑇) =  4𝜉√
𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗) {
1

2(√𝑄+𝜉)
𝐶11 −

1

2(√𝑄−𝜉)
𝐷11}   + 4𝜉√

𝑃𝑒

𝑅
(1 −

𝛾∗

𝜇∗)
𝜉

𝑄−𝜉2 exp{𝜉2𝑇 + 𝜉𝜎1}  𝑒𝑟𝑓𝑐 {
𝜎1

2√𝑇
+

𝜉√𝑇}   

  𝐶11 = exp(𝑄𝑇 − 𝜎1√𝑄) 𝑒𝑟𝑓𝑐 (
𝜎1

2√𝑇
− √𝑄𝑇)     

  𝐷11 = exp(𝑄𝑇 + 𝜎1√𝑄) 𝑒𝑟𝑓𝑐 (
𝜎1

2√𝑇
+ √𝑄𝑇)    

 𝜎1 = 2𝑛√𝑅𝑃𝑒 + 𝑋√𝑅𝑃𝑒      

𝑃(𝑋, 𝑇) = 𝑃1(𝑋, 𝑇) + 𝑃2(𝑋, 𝑇) − 𝑃3(𝑋, 𝑇)  

  𝑃1(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) (𝐶12 + 𝐷12)  

   𝐶12 = exp(𝑎2𝑇 − 𝑎𝑋√𝑅𝑃𝑒) 𝑒𝑟𝑓𝑐 (
𝑋

2
√

𝑅𝑃𝑒

𝑇
− 𝑎√𝑇)    

    𝐷12 = exp(𝑎2𝑇 + 𝑎𝑋√𝑅𝑃𝑒) 𝑒𝑟𝑓𝑐 (
𝑋

2
√

𝑅𝑃𝑒

𝑇
+ 𝑎√𝑇)   

  𝑃2(𝑋, 𝑇) =
1

2
√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) (𝐶13 + 𝐷13)      

  𝑃3(𝑋, 𝑇) =  4𝜉√
𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗) {
1

2(𝑎+𝜉)
𝐶13 −

1

2(𝑎−𝜉)
𝐷13}       + 4𝜉√

𝑃𝑒

𝑅
(

𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗)
𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 +

𝜉𝜎1}  𝑒𝑟𝑓𝑐 {
𝜎1

2√𝑇
+ 𝜉√𝑇}   

  𝐶11 = exp(𝑎2𝑇 − 𝑎𝜎1) 𝑒𝑟𝑓𝑐 (
𝜎1

2√𝑇
− 𝑎√𝑇)         

  𝐷11 = exp(𝑎2𝑇 + 𝑎𝜎1) 𝑒𝑟𝑓𝑐 (
𝜎1

2√𝑇
+ 𝑎√𝑇)           

𝑆(𝑋, 𝑇) = 𝑆1(𝑋, 𝑇) + 𝑆2(𝑋, 𝑇) − 𝑆3(𝑋, 𝑇) − 𝑆4(𝑋, 𝑇) + 𝑆5(𝑋, 𝑇)    + 𝑆6(𝑋, 𝑇)    

 𝑆1(𝑋, 𝑇) = −
1

2

𝛾∗

√𝑅𝑃𝑒
(𝐶12 + 𝐷12)   

𝑆2(𝑋, 𝑇) =  −
𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 − 𝑋√𝑅𝑃𝑒)𝐶12} −

𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 + 𝑋√𝑅𝑃𝑒)𝐷12}   
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 𝑆3(𝑋, 𝑇) =
1

2

𝛾∗

√𝑅𝑃𝑒
(𝐶13 + 𝐷13)   

 𝑆4(𝑋, 𝑇) =  
𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 − 𝜎1)𝐶13} +

𝛾∗

𝑅
√

𝑃𝑒

𝑅
{

1

4𝑎
(2𝑎𝑇 + 𝜎1)𝐷13}   

𝑆5(𝑋, 𝑇) =  
𝛾∗

√𝑅𝑃𝑒
4𝜉 {

1

2(𝑎+𝜉)
𝐶13 −

1

2(𝑎−𝜉)
𝐷13}  +

𝛾∗

√𝑅𝑃𝑒
4𝜉

𝜉

𝑎2−𝜉2 exp{𝜉2𝑇 + 𝜉𝜎1}  𝑒𝑟𝑓𝑐 {
𝜎1

2√𝑇
+ 𝜉√𝑇}   

 𝑆6(𝑋, 𝑇)    =  
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 4𝜉 

1−(𝑎+𝜉)(2𝑎𝑇−𝜎1)

4𝑎(𝑎+𝜉)2 𝐶13 +
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 4𝜉 

(2𝑎𝑇+𝜎1)(𝑎−𝜉)−1

4𝑎(𝑎−𝜉)2 𝐷13 −
𝛾∗

𝑅
√

𝑃𝑒

𝑅
 4𝜉

𝑇

𝑎2−𝜉2 𝐴6    +

𝛾∗

𝑅
√

𝑃𝑒

𝑅
4𝜉

𝜉

(𝑎2−𝜉2)2  exp{𝜉2𝑇 + 𝜉𝜎1} 𝑒𝑟𝑓𝑐 {
𝜎1

2√𝑇
+ 𝜉√𝑇}  

 𝑈(𝑋, 𝑇) = (
𝑐𝑖

𝑐0
−

𝛾∗

𝜇∗ + 𝛾∗𝑋) 𝑒−(
𝑃𝑒

2
𝑋−

𝑃𝑒

4𝑅
𝑇)

−
𝛾∗𝑇

𝑅
𝑒−(

𝑃𝑒

2
𝑋−

𝑃𝑒

4𝑅
𝑇)

   

𝐻(𝑋, 𝑇) − 𝐻(𝑋, 𝑇 − 𝑇𝑝) = {𝐻1(𝑋, 𝑇) − 𝐻1(𝑋, 𝑇 − 𝑇𝑝)} − {𝐻2(𝑋, 𝑇) − 𝐻2(𝑋, 𝑇 − 𝑇𝑝)} + {𝐻3(𝑋, 𝑇) −

𝐻3(𝑋, 𝑇 − 𝑇𝑝)} − {𝐻4(𝑋, 𝑇) − 𝐻4(𝑋, 𝑇 − 𝑇𝑝)}   

𝑁(𝑋, 𝑇) − 𝑁(𝑋, 𝑇 − 𝑇𝑝) = {𝑁1(𝑋, 𝑇) − 𝑁1(𝑋, 𝑇 − 𝑇𝑝)} + {𝑁2(𝑋, 𝑇) − 𝑁2(𝑋, 𝑇 − 𝑇𝑝)} − {𝑁3(𝑋, 𝑇) −

𝑁3(𝑋, 𝑇 − 𝑇𝑝)}    

Result and Discussion 

 The following data in Table 1 is from [6] is used in MATLAB coding to obtain the concentration 

contamination from equation (3.17) by assuming 𝐾(𝑋, 𝑇) = 1 for simplification. 

Table 1: The Parameter and Its Value 

Parameter Value 

𝑐𝑖 0.01 

𝑐0 1.0 

𝑢0 0.01 (𝑚𝑦𝑒𝑎𝑟−1) 

𝐷0 0.1(𝑚2𝑦𝑒𝑎𝑟−1) 

𝛾0 0.000001 

𝜇0 0.0005(𝑦𝑒𝑎𝑟−1) 

𝐿 200𝑚 

𝐾𝑑 0.0025 

𝑃𝑒 2.0 

𝜌 999 

𝑚 0.004(𝑦𝑒𝑎𝑟−1) 

𝑘 0.2 

𝑛 𝑠𝑎𝑛𝑑 0.37 

𝑛 𝑐𝑙𝑎𝑦 0.55 

 

 The average porosity of different geological formations is n=0.37 for sand and n=0.55 for clay. 

From Figure 1, it is evident that contaminant concentration increases with distance in both sand and 

clay, but the rate of increase differs. In sand, the concentration rises more rapidly, indicating faster 

dispersion compared to clay, possibly due to higher permeability or a more efficient transport 

mechanism. 

 Figure 2 shows contaminant concentrations in sand and clay at T=1 and T=10. In sand, the 

concentration increases rapidly with distance at both times, while in clay, it increases more slowly, 

showing a more linear growth. At any given distance and time, contaminant concentration is higher in 
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sand than in clay, indicating that sand allows faster dispersion. Over time, both materials show an 

increase in concentration, but it is more pronounced in sand. 

Figure 1 Concentration Behaviour of Sand vs Clay  

   

 

 

 

 

 

 

Figure 2 Concentration Behaviour of Sand vs Clay at Different Time  

 

 

 

 

   

 

 

Also,two graphs have been observed in the sand geological formation, showing variations in 

seepage velocity and dispersion coefficient. From Figure 3, contaminant concentration is shown with 

seepage velocities of u=0.01, u=0.015, and u=0.02. At u=0.01, there is a gradual increase in 

concentration with distance. At u=0.015, the increase is steeper, and at u=0.02, the increase is the 

steepest, indicating that higher seepage velocities result in higher contaminant concentrations. From 

Figure 4, contaminant concentration is shown with dispersion coefficients of D=0.1, D=0.15, and D=0.2. 

At D=0.2, there is the steepest increase in concentration with distance. At D=0.15, the increase is 

steeper compared to D=0.1, indicating that higher dispersion coefficients result in faster dispersion. In 

both cases, concentration increases more rapidly with distance. 

Figure 3   Concentration Behaviour of Sand with Different Seepage Velocity     

   

Figure 4   Concentration Behaviour of Sand with Different Dispersion Coefficient    
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 Two graphs have been observed in the clay geological formation, showing variations in 

seepage velocity and dispersion coefficient. From Figure 5, contaminant concentration is shown with 

seepage velocities of u=0.01, u=0.015, and u=0.02. At u=0.01, there is a gradual increase in 

concentration with distance. At u=0.015, the increase is steeper, and at u=0.02, it is the steepest, 

indicating higher seepage velocities result in higher contaminant concentrations. From Figure 6, 

contaminant concentration is shown with dispersion coefficients of D=0.1, D=0.15, and D=0.2. At D=0.2, 

there is the steepest increase in concentration with distance. At D=0.15, the increase is steeper 

compared to D=0.1, indicating higher dispersion coefficients result in faster dispersion. In both cases, 

concentration increases more rapidly with distance. 

 

Figure 5   Concentration Behaviour of Clay with Different Seepage Velocity     

   
 

Figure 6   Concentration Behaviour of Clay with Different Dispersion Coefficient      
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Conclusion 

This study highlights the importance of using the ADE model to solve groundwater contamination 

problems and protect water resources, which are crucial for all living things. The study analytically 

solves the ADE for pollutant transport using the Laplace transform technique and analyzes contaminant 

behavior in different geological formations like sand and clay. Sand shows faster contaminant 

movement compared to clay, with dispersion coefficients and seepage velocities significantly 

influencing the rate and distribution of contamination. Higher values result in more rapid contaminant 

spread. The study's findings, achieved through analytical solutions and graphical interpretations using 

MATLAB, emphasize the need for continuous monitoring and understanding of contaminant dynamics 

to protect water resources and guide future research and management strategies. 

 Solving the ADE for different formations, dispersion coefficients, and velocities helps examine 

concentration distribution behaviour, aiding in cleanup strategy decisions. Integrating these models into 

decision-making enhances the protection of water resources, public health, and sustainable water 

supplies. The research findings serve as a valuable predictive tool for groundwater resource 

management and remediation projects, emphasizing the need for ongoing research, interdisciplinary 

collaboration, and adaptive management for successful outcomes. 
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