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Abstract  

The one-dimensional shallow water wave equation is a fundamental equation in fluid dynamics and is 

widely used to model various practical problems. One of the particular problems addressed in this study 

is ocean wave dynamics, and the model that is focused on is the pond model. Therefore, the discussion 

focuses on solving the one-dimensional shallow water wave equation. The research methodology 

involved a literature review of the shallow water wave equation and its solution methods. The one-

dimensional shallow water wave is derived from principles of conservation of mass and conservation of 

momentum. This study used the MacCormack method, a finite difference technique consisting of two 

steps, namely the predictor and corrector steps. The predictor step used forward differencing to estimate 

the solution at the next time step, while the corrector step used backward differencing to refine this 

estimate. These two-step processes help to improve the accuracy of the solution. The MacCormack 

method is employed to conduct numerical simulations of the pond model for one-dimensional shallow 

water wave equations over flat topography. The simulation results indicated that the channel for flat 

topography was obtained for the height of water surface elevation and the velocity of the water at t = 0, 

20, 40, and 60 seconds. Based on the simulation results, the water surface for flat topography moves 

symmetrically and the amplitude and speed of the waves on the surface of the water will always change.  
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1.   Introduction  

The wave equation is a fundamental partial differential equation (PDE) that describes the propagation 

of various types of waves, such as sound waves, light waves, and water waves. It plays a crucial role 

in fluid dynamics, offering insights into the behaviour of waves under different conditions and in various 

media. Exact solutions to the wave equation provide valuable understanding and predictive power for 

phenomena observed in nature and engineering applications [2].  

    

 In this study, the focus is on one specific model of water waves known as shallow water waves. This 

model is particularly important because it describes the behaviour of waves in environments where the 

water depth is significantly less than the wavelength of the wave. Shallow water waves are essential for 

applications such as predicting tsunami behaviour, managing flood risks, and analyzing ripples in pond 

water. The ability to accurately model and predict the behaviour of shallow water waves has significant 

implications for coastal engineering, environmental management, and disaster preparedness 

.  

  The one-dimensional shallow water wave equation is a simplified form of the general shallow water 

equations, derived from the principles of conservation of mass and momentum [4],[5]. It is used to model 

the flow of shallow water in a single spatial dimension, providing a more tractable problem for numerical  
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analysis [6],[7]. However, solving this equation analytically can be challenging, especially when dealing 

with complex boundary conditions and non-flat topographies. Therefore, numerical methods, such as 

the MacCormack method, are employed to obtain approximate solutions.  

  

  
  

 The MacCormack method, introduced by Robert W. MacCormack in 1969, is a finite difference 

technique that uses a predictor-corrector approach to solve time-dependent partial differential equations 

This method is known for its simplicity and accuracy, making it a popular choice in computational fluid 

dynamics. The predictor step estimates the solution at the next time step using forward differencing, 

while the corrector step refines this estimate using backward differencing [15]. This two-step process 

helps to improve the accuracy of the numerical solution.  

  

 The primary goal of this study is to analyze the one-dimensional shallow water wave equation using 

the MacCormack method. The research aims to develop and implement the MacCormack method 

specifically for this purpose and to assess its accuracy and stability under various conditions. The study 

will involve deriving the shallow water wave equation, implementing the MacCormack method for 

numerical simulation, and analyzing the results to gain insights into the behavior of shallow water waves 

.  

 By focusing on the one-dimensional shallow water wave equation, this research contributes to the 

broader understanding of wave dynamics in shallow water environments  

 

2.    Mathematical Formulation 

  

2.1     Derivation of Shallow Water Equations  

  

 The shallow water wave equation consists of the continuity equation and the momentum equation, 

which can be derived from the law of conservation of mass and the law of conservation of momentum, 

respectively.   
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 Equation (1) and (2) are two equations that need to be solved together. This system of equations is 

called the one-dimensional (1D) shallow water wave equation with the acceleration due to gravity 𝑔, 

dependent variables 𝑢 and ℎ as well as independent variables 𝑥 and 𝑡. Based on [17], it is given a 

system of equations which is equivalent to the following equations (1) and (2).  
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where:   

  

• 𝜂 is the elevation of the water surface,  

• 𝐷 is a function of the water depth   

• 𝐷 + 𝜂 is the total water depth  

• 𝑔 is acceleration due to gravity   

   

 

Equation (3) represents the conservation of mass (continuity equation), and equation (4) represents the 

conservation of momentum (motion equation). The model can be illustrated in Figure 1.  

  

 
Figure 1: Illustration of the equation (3) and (4)   

  

  

3. Numerical Computation  

 

3.1 Derivation 1D Shallow Water Equation Using MacCormack Method  

  

By using equations (3) and (4) the derivation of the shallow water wave equation using the MacCormack 

method is as follows. Note that the approximation formula for the MacCormack method for the shallow 

water wave equation was defined:  

  

  

 
  

Where:   

  

• 𝐿 is the flow length   

• 𝑡 is the time duration   

• 𝑁𝑥 is number of discretization of space variable   
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• 𝑁𝑡 is number of time variable discretization  

  

  First, the predictor equation for the MacCormack method is derived from system equations (3) 

and (4). The approximation of the partial derivatives of the space and time variables in the system 

equations is achieved using a first-order forward finite difference scheme. By applying a one-step 

forward difference scheme, the partial derivatives of the space and time variables.  

  

  

 

 

 

 

 

 

  
  

(5)  

  
  

  

  In the predictor step, the value of 𝜂𝑖𝑛+1 and 𝑢𝑖𝑛+1 is a temporary value at the time level n+1, by 

using the notation 𝜂𝑖
𝑛+1̅̅ ̅̅ ̅̅

and 𝑢𝑖
𝑛+1̅̅ ̅̅ ̅̅

. Equation (5) can be written as:  

 

  
  
  

 (6)  

  
  

  

where, 𝛼 =
∆𝑡

∆𝑥
 

  
  In corrector step, the MacCormack method is derived from the system equations. The partial 

derivatives of the space and time variables are approximated using a first-order backward finite 

difference scheme. The partial derivatives of the space and time variables in the system equation are 

then approximated using a one-step backward difference scheme and a half-step backward difference 

scheme. The equation can be written as follows:  

  

  

   

  

  

(7)  

  

  

   

  

  The value of 𝜂𝑖
𝑛+1̅̅ ̅̅ ̅̅   and 𝑢𝑖

𝑛+1̅̅ ̅̅ ̅̅   were used from the predictor step to replace the input value of 

Equation (7), so it can be written as:  
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(8)  

  

  

  

   

  The value of 𝜂
𝑖

𝑛+
1

2 and 𝑢
𝑖

𝑛+
1

2 were replaced by the average value of 𝜂 and u at the time level n 

with a temporary value at the time level n + 1, so that Equation (8) becomes:  
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Where, 𝛼 =
∆𝑡

∆𝑥
 .Equation (9) is the corretor step of the MacCormack method for Shallow Water Equation.  

 

 

 

4. Results and Discussion 

    

  By approach to Equation (6) and Equation (9) were used to solve the problem with the help of 

MATLAB software to get the velocity and amplitude at the exact time. The problem to be discussed is 

the ripples in the pond water  

  

4.1 Pond model   

  

 This is a simulation of a one-dimensional (1D) pond model that represents shallow water waves. Initially, 

the water surface is motionless or has zero velocity. Subsequently, it undergoes disruption in the form 

of primary waves. In this model, the water waves that come into contact with the pond wall will 

consistently undergo reflection. Consequently, reflecting boundary conditions were employed as the 

outcome. Assume that the pond has a length of L meters (m). The computational domain for the variable 

space x was [0,L]. The first wave occurred at the centre of the pond. Put simply, the highest point of the 

first wave occurred when 𝑥 = 10. Space limit  x=0 and x=L represents the pond wall. Meanwhile, the 

time used for the simulation is t (in seconds(s)) with the computational domain for the time variable t is 

[0, 𝑇] with acceleration due to gravity 𝑔 = 9.8 m/s.  

  

   

4.1.1 Flat Topography  

  

 The pond has a water depth below the x-axis (equilibrium level) following function:  
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𝐷(𝑥) = 0.08042, 0 ≤ 𝑥 ≤ 20.  

  The initial conditions for η and 𝑢 was in the form of 𝜂(𝑥, 0) = 0.05𝑒−𝑥2 and 𝑢(𝑥, 0) = 0 for each 0 

≤ 𝑥 ≤ 20. The movement of water waves in the pond will be observed for 60 s using the reflective 

boundary conditions. With 𝑁𝑥 = 200 and 𝑁𝑡 = 3000.   

  

  The numerical calculations were carried out using the MacCormack method with equations (6) 

and (9). The results of the numerical simulations of the pond model in this experiment at t = 0,20,40,60 

are presented in Figures 2,3,4,5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 2: Water surface elevation (Top) and Water velocity (Bottom) at t = 0 s  

 

 

At the initial time t = 0s, the water surface is calm with no wave activity observed. The water 

surface elevation is at equilibrium, showing a flat line indicating no initial disturbance. This equilibrium 

state is essential as it sets the baseline for the numerical simulation. The initial condition of zero 

disturbance ensures that any subsequent changes in the water surface elevation and velocity can be 

directly attributed to the numerical simulation's application. Correspondingly, the water velocity is zero 

across the entire domain, confirming the initial state of rest.   

  This state of rest is crucial for observing the effects of the applied forces and boundary 

conditions as the simulation progresses. The initial calmness represents a controlled environment 

where variables can be introduced systematically to study their impact. This setup establishes the 
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baseline for observing how the water waves evolve over time under the influence of the MacCormack 

method for numerical simulation. By starting with a calm surface, the simulation can accurately depict 

the generation and propagation of waves, providing insights into the dynamics of shallow water waves 

in a controlled setting.  

 

 

 
  

  

  

 

 

 

 

 

 

 

 

 

 

 
  

Figure 3: Water surface elevation (Top) and Water velocity (Bottom) at t = 20 s  

  

 At t = 20s, the simulation shows the initial wave propagation. The water surface elevation graph 

indicates a noticeable disturbance, with the highest amplitude reaching approximately 0.03515 m. This 

initial disturbance is a result of the primary wave generated within the pond, demonstrating the model's 

ability to simulate wave generation accurately. The formation of this wave can be attributed to the initial 

conditions set in the simulation and the application of the MacCormack method.  

 

   The velocity graph reflects this change, with the maximum velocity reaching 0.28667 m/s The 

velocity profile indicates the speed at which the water particles are moving, correlating with the observed 

wave height. The wave has started to reflect off the pond walls, indicating the effectiveness of the 

reflective boundary conditions applied in the simulation.   
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  This reflection is crucial for studying wave interactions and energy conservation within the pond. 

As the waves hit the boundaries, they are reflected back, creating interference patterns that are vital for 

understanding wave dynamics. This phase demonstrates the initial energy distribution across the water 

surface. The interaction between the generated waves and the boundary conditions highlights the 

model's capability to simulate realistic scenarios where waves continuously interact with their 

environment. The data at this stage helps in analyzing the immediate response of the system to the 

initial disturbance and sets the stage for observing longer-term wave behavior and energy dissipation.  

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 4: Water surface elevation (Top) and Water velocity (Bottom) at t = 40 s  

  

  By t = 40s, the water waves continue to propagate and interact with the pond boundaries. The 

amplitude of the waves has slightly decreased to 0.03132 m, and the velocity has reduced to 0.18513 

m/s. These changes suggest some energy dissipation within the system as the waves reflect off the 

boundaries and interfere with each other. The decrease in amplitude and velocity indicates that the 
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energy initially imparted to the system is gradually being absorbed and redistributed through interactions 

with the pond walls and internal frictional forces.   

 

  The symmetric pattern of wave movement observed indicates that the flat topography is 

maintaining consistent wave reflections. This symmetry is essential for validating the model's accuracy 

in representing real-world scenarios where uniform topography leads to predictable wave behavior. The 

reflection and interference of waves provide insights into how energy is conserved and transferred within 

the system. This stage of the simulation helps in understanding the intermediate dynamics of wave 

propagation and the role of boundary conditions in influencing wave behavior. The results highlight the 

importance of considering energy dissipation mechanisms in numerical simulations to accurately predict 

the behavior of shallow water waves over time.  

  

  

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Water surface elevation (Top) and Water velocity (Bottom) at t = 60 s  
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At the final observation time of t = 60s, the simulation shows a further decrease in wave 

amplitude to 0.02759 m and a reduction in velocity to 0.14328 m/s. The continuous interaction between 

the waves and the pond boundaries leads to a gradual loss of energy. This energy loss can be attributed 

to the reflective boundary conditions and the inherent damping effects within the numerical model. The 

results illustrate how the system stabilizes over time with decreasing wave energy. The gradual 

reduction in amplitude and velocity suggests that the system is reaching a state of equilibrium where 

the energy imparted to the waves is balanced by the energy dissipated through reflections and internal 

damping. The average amplitude and velocity values, 0.02401 meters and 0.01025 meters per second 

respectively, highlight the energy dissipation effect over time in a system with reflective boundaries. 

 

    This phase demonstrates the long-term behavior of the simulated shallow water waves, 

providing insights into how wave energy diminishes and stabilizes in a confined environment. The 

observed trends in wave amplitude and velocity over time are critical for understanding the long-term 

stability and energy dynamics of shallow water waves. This data is essential for applications such as 

coastal engineering and environmental studies, where predicting wave behavior over extended periods 

is crucial. The final results affirm the effectiveness of the MacCormack method in simulating shallow 

water wave dynamics and provide a foundation for further studies involving more complex topographies 

and wave interactions.  

  

  

5. Conclusion  

 

In this article, numerical simulations using the MacCormack method have been carried out for 

1D shallow water wave pond model for flat topography. Based on the results of numerical simulations 

that have been carried out, the water surface for flat topography moves symmetrically and the amplitude 

and speed of the waves on the surface of the water will always change. As a result, it can be concluded 

that the topographical shape can affect the movement of the water surface.   
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