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Abstract  

  Bacterial chemotaxis, which explains the movement of bacteria in response to chemical gradients, plays a 

critical role in various biological processes. This study presents a numerical simulation of bacterial chemotaxis in 

response to chemoattractant, using a mathematical model based on the classical Keller-Segel equations. The 

Keller-Segel model, a widely recognized mathematical representation of chemotactic behaviour, is utilized to 

describe the interactions between bacterial density and the concentration of the chemoattractant. Finite 

difference method is used to discretize the coupled partial differential equations of the Keller-Segel model. This 

approach allows for the efficient approximation of the spatial and temporal dynamics of the bacterial population 

and chemoattractant concentration. Through numerical experiments, we analyse the behaviour of the bacterial 

towards the chemoattractant. Additionally, we investigate the stability and convergence of the numerical 

scheme, ensuring the reliability of the simulation outcomes. This research provides valuable insights into the 

mechanisms underlying bacterial chemotaxis and offers a computational framework that can be extended to 

study other chemotactic systems. 
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1 Introduction  

  Chemotaxis, a critical bacterial behaviour involving the sensing and response to chemical gradients [1], plays an 

important role in the navigation of bacterial movement. This process is facilitated through complex intracellular 

signalling pathways and receptor complexes positioned in the cell membrane. Cellular movement away from 

highly concentrated places is classified as diffusion. These receptor complexes can dynamically switch between 

active and inactive states in response to the presence of chemoattractant, guiding the bacteria towards 

favourable conditions. The activation of spatially specific cellular signal by chemoattractant causes cells to change 

direction and migrate towards the highest concentration of the chemoattractant [2]. 

  The Keller-Segel model, a well-established mathematical framework, has been useful in explaining chemotactic 

movements. It is composed of linked partial differential equations that model the dynamics of chemoattractant 

concentration and cell density. However, the fundamental complexity of the Keller-Segel model, characterized 

by coupled nonlinear partial differential equations, complicates challenges for analytical solutions. Previous 

studies employing this framework have provided invaluable insights into the spatiotemporal dynamics of cellular 

behaviour in response to chemoattractant [3]. One significant application is in microbiology, where it has been 

useful in imitating the creation of elaborate spatial patterns in response to specific environmental conditions, as 

observed in phenomena such as E. coli behaviour [4].  

  Recognizing the limitations of the current Keller-Segel model, efforts have been devoted towards its 

remodelling to enhance its applicability and computational tractability. As part of this effort, the current 

research project concentrates on a minimalist approach to the Keller-Segel model. This includes converting the 

chemoattractant equation (v) into a one-dimensional diffusion equation, thus simplifying the model while 

preserving its key properties. This transformation is facilitated by employing the Forward Time Centered Space 

(FTCS) scheme, a numerical approach well-suited for solving partial differential equations. 
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Simultaneously, the movement of cells (u) is modelled using the finite difference method, employing a similar 

FTCS technique as utilized for the chemoattractant equation. This integrated approach enables for a thorough 

analysis of the spatiotemporal dynamics of cellular behaviour in response to chemoattractant. This study aims 

to minimal the Keller-Segel model, enhancing its computational efficiency and applicability to real-world 

scenarios. This report is conducted to address the challenges in modelling the movement of bacterial and 

chemotaxis using the Keller-Segel model by transforming the chemoattractant equation into a numerical 

approach involving one-dimensional diffusion and using the finite difference method to simulate bacterial 

movement, thereby providing a new framework for understanding the spatiotemporal dynamics of bacterial 

behaviour in response to chemoattractant. 

 

2 Literature Review 

2.1 Mathematical Approaches to Chemotaxis 

  Chemotaxis describes the movement of cells towards or away from chemical stimuli, an essential process in 

microbiology. For bacteria, chemotaxis allows them to locate nutrients and avoid harmful substances by moving 

along the chemical gradients. Chemotaxis responses in eukaryotic microorganisms are controlled by processes 

shared by all cells in the eukaryotic kingdom. These processes primarily include the regulation of microtubule- 

and/or microfilament-based cytoskeletal components [5]. For example, in the E. Coli, bacteria, the behaviour in 

chemotaxis is that they use their flagellar motors to swim towards or away from chemical gradients, and how 

stochastic fluctuations in the CheR protein affect their behaviour [6]. 

 
Figure 1: the movement of bacteria in straight and rotate  

  Mathematical modelling has been crucial in understanding chemotaxis. Various models have been developed 

to describe the spatial and temporal distribution of bacterial populations in response to chemical gradients. A 

study by [4], the use of partial differential equations to describe the spatial distribution of chemical gradients 

and bacterial populations, which provides insights into the mechanisms driving chemotaxis.  

 

 2.2 Keller-Segel Model 

  The Keller-Segel model, developed in 1970, is a foundational mathematical framework for describing 

chemotaxis [7]. Keller and Segel developed the Keller-Segel model to describe the aggregation of Dictyostelium 

discoideum, a form of slime mold, due to an appealing chemical component [8] It consists of coupled partial 

differential equations that model the dynamics of cell density and chemoattractant concentration. The classical 

Keller-Segel model is given by: 

𝑢𝑡 = ∇ ∙ (𝑘1(𝑢, 𝑣) ∙ ∇𝑢 − 𝑘2(𝑢, 𝑣) ∙ 𝑢 ∙ ∇𝑣) + 𝑘3(𝑢, 𝑣) 

𝑣𝑡 = 𝐷𝑣∇2𝑣 + 𝑘4(𝑢, 𝑣) − 𝑘5(𝑢, 𝑣) 

where u is Cell density, v is concentration of chemoattractant, 𝐷𝑣  is chemoattractant diffusion, 𝑘1(𝑢, 𝑣) is Cell 

diffusivity, 𝑘2(𝑢, 𝑣) is chemotactic sensitivity, 𝑘3(𝑢, 𝑣) is cell growth and death, 𝑘4(𝑢, 𝑣) is chemoattractant 

production, and 𝑘5(𝑢, 𝑣) is chemoattractant synthesis and degradation[9]. The model has been used to 

investigate a variety biological process, such as bacterial chemotaxis, embryonic development, and tumor 

growth. For example, this Keller-Segel model help to clarify the behaviour of biological tissues at various scales, 

ranging from the microscopic level of individual cells to the microscopic level of entire organisms [8].  

 

2.3 Numerical Approach in Chemotaxis Modelling 
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  To address the challenges posed by the Keller-Segel model, numerical method such as finite difference methods 

are used. These methods facilitate the simulation of chemotactic behaviour by discretizing the equations and 

enabling their solution on a computational grid. In the preceding paper, for example they describe numerical 

techniques and modelling of bacterial movement in response to chemoattractant [10]. The study compares the 

chemotaxis effectiveness of two populations of E. Coli bacteria, one with constant CheR concentration and the 

other with changing CheR concentration, using a two-dimensional numerical simulation. Simultaneously, the 

movement of cells is modelled using the finite difference method, implying a similar FTCS technique as utilized 

for the chemoattractant equation. This integrated approach enables a comprehensive investigation of the 

spatiotemporal dynamics of cellular behaviour in response to chemoattractant. Based on a review of previous 

research, an innovative approach to the Keller-Segel model has been developed, with the goal of streamlining 

the existing system of two partial differential equations. This includes changing one equation into a one-

dimensional equation, where x represents the distance from the source, and solving both equations using the 

numerical finite difference method. To test this strategy, it must be used with documented data and conditions 

from earlier studies on bacterial chemotaxis. MATLAB was the primary computational tool used to create 2D 

visualizations of the spatiotemporal dynamics of chemoattractant distribution and bacterial cell movement 

under various conditions. 

 

3  Methodology 

3.1 Mathematical Formulation 

  The existing current Keller-Segel model is still too complicated to solve and simulate the cell behaviour. Some 

more assumption needs to be made to simplify the model. Thus, this study come up with minimal model of 

Keller-Segel model. The necessity assumption is as follow; (i) Individual cells undergo a combination of random 

motion and chemotaxis towards chemical attractant. (ii) Cell neither die or divide. (iii) The attractant is produced 

at constant rate. (iv) The degradation rate of attractant is also in the constant rate and (v) The attractant diffuses 

passively over the field. Hence, the minimal model of Keller-Segel model can be built as: 

𝑣𝑡 = 𝐷2 ∙ ∇2𝑣 

                                                                                                                                                                                               (3.1)                                                      

𝑢𝑡 = 𝐷1 ∙ ∇2𝑢 − 𝒳 ∙ ∇ ∙ (𝑢 ∙ ∇𝑣) 

                                                                                                                                                                                               (3.2)     

where, 𝐷1, 𝐷2 𝑎𝑛𝑑 𝒳 be positive constants. 

  The equations can be solved numerically by using FTCS scheme, for the chemoattractant equation (3.1), it can 

be discretized as: 

𝑣𝑖
𝑛+1 − 𝑣𝑖

𝑛

∆𝑡
= 𝐷2

𝑣𝑖+1
𝑛 − 2𝑣𝑖

𝑛 + 𝑣𝑖−1
𝑛

∆𝑥2
                               

                                                                                                                                                                                               (3.3) 

Then, the equation (3.3) can be simplified as: 

𝑣𝑖
𝑛+1 = 𝑣𝑖

𝑛 +
𝐷2 ∙ ∆𝑡

∆𝑥2
[𝑣𝑖+1

𝑛 − 2𝑣𝑖
𝑛 + 𝑣𝑖−1

𝑛 ] 

                                                                                                                                                                                               (3.4) 

For the movement of cells equation (3.2), it also can be discretized as: 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= 𝐷1

𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛

∆𝑥2
− 𝒳 [(

𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2∆𝑥
) (

𝑣𝑖+1
𝑛 − 𝑣𝑖−1

𝑛

2∆𝑥
) + 𝑢𝑖

𝑛 (
𝑣𝑖+1

𝑛 − 2𝑣𝑖
𝑛 + 𝑢𝑖−1

𝑛

∆𝑥2
)] 

                                                                                                                                                                                               (3.5) 

Then, the equation (3.5) can be simplified as: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝐷1 ∙ 𝑟(𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 ) − 𝒳 ∙

𝑟

4
[(𝑢𝑖+1

𝑛 − 𝑢𝑖−1
𝑛 )(𝑣𝑖+1

𝑛 − 𝑣𝑖−1
𝑛 )] + 𝒳

∙                                                           𝑟[𝑢𝑖
𝑛 ∙ (𝑣𝑖+1

𝑛 − 2𝑣𝑖
𝑛 + 𝑣𝑖−1

𝑛 )] 

                                                                                                                                                                                               (3.6) 

                                 

where 𝑟 =
𝛥𝑡

𝛥𝑥2 , 𝑖 =  discrete point for space, 𝑛 = discrete point for time, 𝛥𝑡 =  time step size and 𝛥𝑥 =

 space step size. 
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3.2 Von Neumann Stability Analysis 

  The stability for the new minimal model of Keller-Segel need to be analysed. Because the scheme is one for a 

partial differential equation, different method is utilized for their stability analysis. The method which will be 

employing is the von Neumann stability analysis. To assess the stability of numerical scheme applied to the 

minimal model of Keller-Segel, the well-established von Neumann method will be used in this study. Given the 

complexity of the cell density equation (u), this study will initially simplify the analysis by considering the heat 

equation as a representative as the equation can be symbolized with chemoattractant equation, (v). The heat 

equation in one-dimensional after discretised by using FTCS scheme is given by: 

𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑡
= 𝛼

𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛

∆𝑥2 . 

where 𝑢𝑖
𝑛 represents the temperature at spatial point i and time step n, ∆t is the time step size and ∆x is the 

spatial step size. After substitute with error equation, then simplified the equation and use the amplification 

factor, G, the equation become: 

|𝑒𝛼∆𝑡| = |1 −
4𝛼∆𝑡

∆𝑥2
(

𝑠𝑖𝑛2(𝑘𝑚∆𝑥)

2
)| ≤ 1 

  Then, after split to two parts, and assuming the 𝑠𝑖𝑛2(𝑘𝑚∆𝑥) just a function, then this condition only hold if: 

𝛼∆𝑡

∆𝑥2
 ≤  

1

2
 

  Hence, the ratio between the step size of time and the step size of space must not exceed 
1

2𝛼
. In summary, the 

FTCS scheme is stable for the heat equation when step sizes are small enough to satisfy the requirement for 

stability. In this study, the minimal Keller-Segel model without advection terms will be looked, which means it 

will only have 2nd order differentiations in addition to non-differentiated terms.   

                                                                                                                                                                                                                                                                                                                                                                                    

4  Results and Discussion  

  The choice of parameter values plays a crucial role in accurately capturing the biological phenomena under 

investigation, and thus, optimizing these settings is essential for obtaining meaningful insights from simulations 

of Keller-Segel model. This study approach involves examining the sensitivity of the Keller-Segel model to change 

in each parameter, allowing the study to pinpoint the most influential factors driving chemotactic behaviour. 

For the minimal model Keller-Segel that will used in this study, the equation (3.4) and (3.6) will be involved with 

these parameters setting values: 𝒳 = 4.02, 𝐷1 = 2, 𝐷2 = 1, 𝐿 = 10, and 𝑡 = 0.5, 0.8, 1.0, 5.0 while 𝒳 is 

chemotactic sensitivity, 𝐷1 is cell diffusivity, 𝐷2 is chemoattractant diffusion, L is length of domain and t is total 

simulation time. The values for the space step and the time step size used were ∆𝑥 = 0.05 𝑎𝑛𝑑 ∆𝑡 = 1 ÷

42000, giving a step ratio of 1:210, which should be sufficiently small that the stability criterion is met for 

diffusion. Then, the number of spatial points is 𝑁𝑥 = 𝐿/∆𝑥 and number of time steps is 𝑁𝑡 = 𝑡/∆𝑡. 

  According to equations (3.4) and equation (3.6), the initial conditions for density cell (u) and concentration of 

chemoattractant (v) are set to have a value of 0.5 throughout the simulation domain, except for a single point 

at the centre, 𝑥 =
𝑁𝑥

2
 where there are set to 0.6. For the boundary condition, this study used Neumann boundary 

conditions for density cells and concentration of chemoattractant. This means that the derivative of u and v with 

respect to x evaluated at the first grid point, (𝑥1) and the last grid point, (𝑥𝑁) is equal to zero.  

  To visually communicate the result of the numerical simulation of chemotaxis by Keller-Segel model, graphical 

representations were constructed by using MATLAB, depicting the fluctuations in u and v over different time 

intervals. These plots, featuring red lines for cell density and blue lines for chemoattractant concentration. 
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Figure 2: A simulation of spatiotemporal distribution of cell density (red lines) and concentration of 

chemoattractant (blue lines) at distinct time points (specifically, t=0.5, 0.8,1,0 and 5.0). 

These Figure 2 simulates the initial cell and chemoattractant concentrations, shows as high values at the 

domain’s centre. This initial situation simulates biological circumstances in which cells are discharged from a 

concentrated source, such as a wound site or an infection point, and are surrounded by a high concentration of 

chemoattractant generated by the tissue. As time progresses, the position of cells and chemoattractant changes. 

The reduction in the values of cell density and chemoattractant concentration indicates that both elements are 

moving away from their initial concentration point. Concentration gradients drive this diffusion process, in which 

cells move from low to high concentrations of chemoattractant, led by chemical signals. Simultaneously, the 

chemoattractant diffuses away from its source, gradually reducing concentration gradients. Cells detect and 

move along the concentration gradient of the chemoattractant, migrating from areas of lower concentration to 

areas of higher concentration, a process known as chemotaxis. Over time, the chemoattractant diffuses away 

from its source, reducing the overall concentration gradient. As the chemoattractant spreads out, the 

concentration gradients become less steep, leading to a slower migration of cells. The interaction between cell 

density and chemoattractant concentration is dynamic, as cells move towards the chemoattractant, they can 

alter the local concentration, further influencing their movement. Eventually, an equilibrium state may be 

reached where the distribution of cells and chemoattractant becomes more uniform, with reduced directional 

movement of cells. This process is crucial in biological scenarios such as wound healing, where cells need to 

move towards the site of injury in response to chemoattractant signals.  

 
Figure 3: A simulation of the decreasing in the values of cell density and concentration chemoattractant over 

time. 

  Figure 3 suggests that the system is approaching a steady state after a several times. In the Keller-Segel model, 

this steady state shows a balance between cell and chemoattractant diffusion, as well as consumption and 

production rates. At this steady state, the concentrations of cells and chemoattractant are uniformly distributed 

across the domain, indicating a condition of dynamic equilibrium. However, it is important to consider that 

maintaining real steady state in biological systems can be difficult due to a variety of factors such as cell growth, 

chemoattractant degradation, and external perturbations. As a result, what we see in Figure 2 may reflect a 

quasi-steady state, in which the system appears to reach a stable distribution within the observed time but 

continues to experience dynamic changes beyond that.  

  The Keller-Segel model also can indicates the difference results of both density cells and chemoattractant 

concentration based on the values parameter of chemotactic sensitivity.  
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Figure 4: A representation of the dynamical of cell density and chemoattractant concentration. From left, the 

chemotactic sensitivity, 𝐷1 = 0.5 and the chemotactic sensitivity, 𝐷1 = 10. 

  Notably, in the figure 4, When the chemotactic sensitivity is reduced, the distant peak between (u) and (v) 

becomes more prominent, indicating that cells are less attracted to the chemical signal. This implies that with 

lower sensitivity values, cells respond less to the chemical gradient, resulting in a larger separation between the 

cell density and chemical concentration peaks. On the other hand, increasing chemotactic sensitivity causes the 

peak of (v) to become larger than that of (u). This means that at higher sensitivity levels, cells are more strongly 

attracted to the chemical signal, causing them to gather more closely near the chemical source. As a result, the 

chemical concentration peak becomes more conspicuous, outweighing the cell density peak. In biological 

situations, such findings are consistent with the expected behaviour of cells responding to chemoattractant 

gradients. Cells normally migrate towards higher concentrations of chemoattractant, led by chemical cues that 

direct them to areas of injury or infection. Thus, the model's representation of increased chemotactic response 

at higher sensitivities and decreased response at lower sensitivities reflects fundamental biological processes. 

This qualitative comparison with shown biological phenomena strengthens the model's validity by proving its 

capacity to simulate genuine cellular behaviours under a variety of chemotactic scenarios. 

Conclusion  

  Chemotaxis is a fundamental biological process that affects phenomena such as immune response, wound 

healing, and microbial infection. Keller-Segel model is the central for understanding the behaviour of chemotaxis 

as it is a theoretical framework that can integrate principles of diffusion and chemotactic cell migration. Through 

this model, this study helps to gain insights into spatiotemporal dynamics of cell density and chemical 

concentration gradients and unravelling the interplay between migration and chemical signalling. By using the 

minimal model of Keller-Segel, this study simulates the diffusion-driven processes where cell density and 

chemoattractant concentration spread from initial high-concentration points, highlighted the dynamic nature of 

chemotactic responds. Despite challenges in achieving a true steady state due to various biological factors, the 

model effectively demonstrates how chemotactic sensitivity influences the spatial patterns crucial for cell 

migration. 

  In future research, more research is needed to improve the understanding of chemotaxis and its applications. 

The combination of experimental validation and computational simulation can close the gap between theory 

and observation. Multiscale techniques, exploring disturbing effects, and clinical applications also can help the 

theory and practice to enhance the understanding deeper of chemotaxis. 
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