

126

Vol. 24, 2024, page 126-132

The Application of Automatic Derivative in System of Nonlinear Equations

Abstract

Nur Afiqah Masyitah Mohd Zaki, Yeak Su Hoe

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia
Corresponding author: s.h.yeak@utm.my

Automatic differentiation is a useful technique for computing the derivatives of functions that expressed

as computer programmes. The accuracy and effectiveness of the derivatives make it indispensable in

numerous disciplines, such as machine learning, optimisation, and scientific computing. The purpose

of this study is to investigate the applications of automated differentiation (AD) in machine learning and

mathematics. Its principal objectives include the investigation of related problems and applications,

methods for improving differentiation, and mathematical applications of AD in non-linear systems.

PyCharm, a Python programming tool, will be utilised in this study to make the application of

mathematics easier. The Jacobian matrix of functions with inputs and outputs is created in AD systems

using forward and reverse mode differentiation, it also a computational method for calculating gradients

in deep learning issues involving several input variables. When there are numerous input variables,

forward mode differentiation typically becomes challenging, however reverse mode requires more data

and can compute multiple derivatives at once in a single run. The application of automatic differentiation

to parameterized nonlinear system solutions is discussed. It discusses iterations, particularly Newton's

approach for parameter optimisation and fixed-point iterations. A comparison is presented between the

fixed-point iteration method and Newton's methodology. One particular application of fixed-point

iteration is the Newton's method. In general, AD enables the computation of gradients for parameter

optimisation and sensitivity analysis in a range of applications.

Keywords: Automatic Derivative; Nonlinear equation; Fixed-Point iteration; Newton’s method

1. Introduction

Calculating derivatives is necessary for many numerical techniques.The gradients are essential to

machine learning because they help train neural networks [1]. Computing derivatives becomes a

challenging undertaking as probabilistic models and algorithms become more complicated. It can only

quantitatively analyse derivatives at specific places in many issues and unable to calculate them

analytically. It can be difficult and time-consuming to solve an analytical problem by hand, even in cases

where one exists.This paradigm has grown in popularity in recent years because it offers a powerful

tool for optimising issues, machine learning, and scientific modelling [2].

The computation of derivatives in computer programs can be categorized into four main methods:

manual derivation and coding, numerical differentiation using finite difference approximations, symbolic

differentiation and automatic differentiation, also known as algorithmic differentiation. Traditional

machine learning methods often rely on the evaluation of derivatives and the introduction of new models

has historically involved manually deriving analytical derivatives for optimization procedures. Manual

differentiation more error-prone, while numerical differentiation, though simple, can be highly inaccurate

and does not scale well for machine learning applications. Symbolic differentiation addresses some

issues but can result in complex expressions and limits algorithmic control flow. AD is a powerful

technique that interprets a computer program by incorporating derivative values into the variable domain

and redefining operators to propagate derivatives according to the chain rule of differential calculus.

With the rise of deep learning and modern workflows based on rapid prototyping and code reuse in

frameworks like Torch, and TensorFlow, projects such as autogradand PyTorch have played a

significant role in bringing general-purpose AD to the mainstream.

mailto:s.h.yeak@utm.my

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

127

This research aims to (1) explain the concept and techniques of automatic differentiation, (2) explore

the efficiency and accuracy of AD in non-linear system and (3) investigate how AD is implemented

mathematically. This study focused on implementation of AD in non-linear system. Compile time is not

taken into account because the purpose only wanted to builds a program application of AD.

2. Literature Review

2.1 The development of AD

AD fundamental mathematical concepts have existed for a very long period. No promise is made here

about completeness, as the methodologies of AD have been independently discovered numerous times

by different people at different times and places. The indirect approach of first obtaining derivative

formulas and then evaluating those appears to have been utilised fairly universally, even though the AD

methodology could have been used for the assessment of derivatives by hand or with tables and desk

calculators. As such, the topic of debate will be limited to the era of digital computers. The history of AD

from 1962 to the present can be broadly categorised into four decades. In the first, a variety of issues

were tackled using the straightforward, uncomplicated method known as the forward mode, primarily

at the Mathematics Research Centre (MRC) of the University of Wisconsin–Madison [3]. A period of

inaction ensued, during which AD was not accepted for unclear reasons. But by 1982, because to

advancements in programming methods and the discovery of the effective reverse mode, interest in AD

had unquestionably returned. The work of Andreas Griewank [4] and his colleagues at Argonne National

Laboratory (ANL) has been crucial in much of the advances made in this age. Subsequently, there was a

remarkable surge in research and development of AD approaches, tools, and applications, as

documented in the Griewank's book[4]. The computational graph, a method of visualising an algorithm

or computer programme other than mathematics, is a helpful tool in the development of AD after 1980.

2.2 Automatic differentiation with symbolic and numerical differentiation
Symbolic differentiation is the process of computing the derivative of a function using symbolic

expressions [4]. While symbolic differentiation is beneficial for basic functions, it can be problematic for

complex functions and may suffer from expressions well, where the derivative expression becomes

exponentially larger than the original expression. This problem can be overcome by simplifying the

derivative, but the process can be costly. Numerical differentiation, on the other hand, computes the

difference quotient using finite differences to approximate the derivative of a function. This method is

straightforward to construct, but it is at risk of numerical inaccuracies and may necessitate a large number

of function evaluations, which can be computationally expensive [5].

Automatic differentiation, overcomes the limitations of both symbolic and numerical differentiation by

computing derivatives via a recursive application of the chain rule [6]. This method is fast and precise, and

it can compute exact derivatives to machine precision for any differentiable function, regardless of its

complexity.

2.3 Automatic derivative type

Automatic differentiation can be performed in forward, backward, or mixed mode using both the operator

overloading approach and the source code transformation method [7]. The variation to use is determined

by the situation's unique needs, such as the complexity of the function to be differentiated, the precision

and efficiency of the differentiation, and the programming language and tools available. Operator

overloading, for example, may be desirable for tiny functions and rapid prototyping, but source code

translation may be preferable for complicated functions and production-level code.

2.4 Gradient Based optimisation

Gradient-based optimization involves using gradient information to guide the search for optimal

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

128

solutions. Principles and Techniques of Algorithmic Differentiation, systematically covers the theoretical

foundations of AD and its application in optimization, emphasizing its superiority over numerical

differentiation in terms of accuracy and efficiency [4].

2.5 The use of python as mathematical programming

Automatic differentiation automatically differentiates numerical Python code, reducing simulation times

by less than 4 times compared to hand-written differentiation code [8].

3. Methodology

3.1. Research Data

AD enables the computation of precise derivatives in a specific amount of time. The applications of this
sensitivity analysis are numerous. Differentiation is used in the backpropagation technique in deep neural
networks and in any other field where a rate of change needs to be defined. A derivative is a way to
quantify rate changes. The fastest optimisation methods rely on derivative computation. Assuming, for
instance, that the square root function is the inverse of the square function, the inverse of the function 𝑓,
which involves many times, can be calculated using Newton's approach as indicated in equation (1).

1

()

'()

n
n n

n

f x
x x

f x
+ = − (1)

where 𝑥𝑛 represents the value of a variable at a specific iteration or step, and 𝑛 represents the index or
number of that iteration. The process continues until convergence, then the derivatives are used.

1.1. Automatic differentiation (AD) stages

The stages in the analysis of AD using following technique and approach:

1) Dual number.
2) Forward mode differentiation
3) Reverse mode differentiation (backpropagation)

Analyzing AD using the following computational graf function in equation (2):
Determine the following functions using forward and reverse mode:

 (,) sin()x y xy y= − (2)

By using forward mode and backward mode, to calculate 𝛛𝑓defined in equation (3) and (4):
 𝛛𝑦

 i
i

v
v

y

=

& (3)

j

i

i

f
v

v

=

 (4)

4. Results and discussion

4.1. Newton’s method

Newton’s method is a faster approach for finding the convergence. It also mentions the use of
approximate Jacobian updates in practical implementations to improve computational efficiency [9]. By
using function in nonlinear system as in equation (5):

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

129

2𝑥 + 𝑦 + 𝑥𝑦 − 1 = 0

𝑥 + 2𝑦 + 𝑥2 − 1 = 0 (5)

the multidimensional Taylor series in (6) can be simplified as (7):

 𝐴1(𝑎, 𝑏) + [𝐵11𝐵12] [𝑥
𝑦

]

 𝐴2(𝑎, 𝑏) + [𝐵21𝐵22] [𝑥
𝑦

] (6)

 𝐹 = [𝑓1
𝑓2

] = [0
0
] = [𝐴1(𝑎,𝑏)

𝐴2(𝑎,𝑏)
] + [𝐵(𝑎, 𝑏) [𝑥

𝑦
] (7)

Using newton iteration, it can be form as in equation (8):

𝑋𝑛+1 = 𝑋𝑛 − 𝐽(𝑋𝑛)−1 ⋅ 𝐹(𝑋𝑛) . (8)

Using property, the whole iteration form can derived as equation (9),

𝑋𝑛+1 = 𝐺𝑛𝑋𝑛 + 𝐻𝑛. (9)

where𝑊𝑛 = 𝐺𝑛 ⋯ 𝐺0, 𝐻𝑛 = 𝐺𝑛 ⋯ 𝐺1𝐾0 + 𝐺𝑛 ⋯ 𝐺2𝐾1 + 𝐺𝑛 ⋯ 𝐺3𝐾2 + ⋯ + 𝐺𝑛𝐾𝑛−1 + 𝐾𝑛

with the convergence ||𝐺0|| < 1.

4.2 Convergence result newton’s method

Using python programming, with feasible initial guess of 𝑋0, Figure 4.2 shows the result of Newton’s
method in nonlinear system with two variable. It shows that result converged after 5 iterations.

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

130

Figure 4.1 Result of newton’s method in nonlinear system with two variables.

4.3 Fixed point method

To stages to analysis using fixed-point method

1. Input data using equation (5)

2. Derive equation (8) using fixed-point iteration with feasible initial guess, it can be expressed as

equation (9) and can be simplified into equation (10)

𝑋𝑛+1 = 𝐺𝑛𝑋𝑛 , (9)

𝑋𝑛+1 = 𝑊𝑛𝑋0 , (10)

where 𝑊𝑛 = 𝐺𝑛 ⋯ 𝐺0 .

A study that emphasis the necessity of regularisation in inverse problem solving and the combination of

data-driven regularisation and convex feasibility, supports this study on fixed-point iteration in deep

learning [10].

4.3 Debugging python program

The code failed to run after encountering an error during execution. However, this event made it

necessary to look into the issue more thoroughly, which helped to clarify the debugging procedure.

Important insights on debugging and improving software were obtained by methodically finding and

fixing the flaws in the code. Thus, this experience helped to deepen the understanding of error detection

and resolution approaches, as well as emphasising the value of debugging in programming. A

debugging tool is a type of software used for debugging computer programs which allows stopping code

execution at any given point,restarting it and continue stepping through the text as desired [12]).

Developers will face limitless frustration trying to solve their problems if they cannot debug code.

Developers can consider themselves lucky because they can easily find and correct their programs’

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

131

weaknesses without losing much time using Python debugging tactics and integrated solutions. Figure

4.2 shows the Pycharm ‘s debugger.

Figure 4.2 the Pycharm ‘s debugger.

Conclusion

In many different domains, the research and use of nonlinear systems have been greatly influenced by

Automatic Differentiation (AD). AD makes use of mathematical ideas like the dual numbers and Taylor's

theorem to facilitate accurate and speedy derivative computing, which is essential for the analysis and

optimisation of nonlinear systems. AD guarantees precise gradient computation in the setting of nonlinear

optimisation, which is necessary for gradient-based optimisation techniques. This accuracy improves

optimisation methods, leading to more dependable and rapid convergence. Large-scale, complex

nonlinear optimisation issues that arise in machine learning can be handled using it. The ability of AD to

compute derivatives efficiently also makes it easier to solve nonlinear equations and systems, which are

frequently needed in optimisation assignments. Reverse mode AD is used by the backpropagation

algorithm, which is the foundation of deep learning, to effectively compute accurate gradients. The first-

order Taylor expansion is utilised by forward mode AD with dual numbers to enable accurate and efficient

gradient computation for nonlinear functions. This method works especially well for issues where there

aren't as many input variables, making nonlinear system optimisations quicker and more accurate.

Because Backward mode AD uses the chain rule to effectively compute gradients for functions with

multiple inputs, it is the best option for training large nonlinear systems like deep neural networks. The

crucial role of reverse mode differentiation is emphasised in [11],especially in deep learning problems

where the number of input variables is significantly more than the number of outputs.

Mohd Zaki and Su Hoe (2024) Proc. Sci. Math. 1: 126-132

132

Acknowledgement

The researcher would like to thank all people who have supported this research, especially Dr Yeak

Su Hoe for his dedication and guidance supervision. Also, appreaciation to friend who have

encourage me throughout this process and never forgetting my parents for their cooperation. I am

deeply grateful for not giving up on myself which have allowed me to complete my project report.

References

[1] Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron,

madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415-1442.

[2] Mike Innes, Alan Edelman, KenoFischer, Chris Rackauckas, Elliot Saba, Viral B. Shah ,and

Will Tebbutt. A Differentiable Programming System to Bridge Machine Learning and

Scientific Computing, July2019. arXiv: 1907.07587[cs].

[3] L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture

Notes in Computer Science. Springer, Berlin, 1981.

[4] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques

of algorithmic differentiation. SIAM, 2008..

[5] William H.Press, Saul A.Teukolsky, William T. Vetterling, and Brian P.

Flannery.Numerical recipes 3𝑟𝑑 edition:The art of scientific computing.Cambridge

university press, 2007.

[6] Atilim Gunes Baydin,Barak A. Pearl mutter, Alexey And reyevich Radul, and Jeffrey Mark

Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning

Research, 18:1–43, 2018. Publisher: Microtome Publishing.

[7] Jarrett Revels, Tim Besard, Valentin Churavy, Bjorn DeSutter, and Juan Pablo Vielma.

Dynamic automatic differentiation of GPU broadcast kernels. arXiv preprint

arXiv:1810.08297,2018.

[8] Nobel, P. (2020). auto_diff: An Automatic Differentiation Package For Python.

Simulation Conference (SpringSim), 1-12. https://doi.org/10.22360/SpringSim.2020.ANSS.006.

[9] Campbell, S. L., & Hollenbeck, R. (1996). Automatic differentiation and implicit

differential equations. Computational Differentiation: Techniques, Applications, and

Tools, 215-227.

[10] Heaton, H., Wu Fung, S., Gibali, A., & Yin, W. (2021). Feasibility-based fixed point

networks. Fixed Point Theory and Algorithms for Sciences and Engineering, 2021(1), 1-

19.

[11] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic

differentiation in machine learning: a survey. Journal of Marchine Learning

[12] Langtangen, H. P. (2014). Debugging in Python. Center for Biomedical Computing,

Simula Research Laboratory, Department of Informatics, University of Oslo, 1-3.

2020 Spring

https://doi.org/10.22360/SpringSim.2020.ANSS.006

