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Abstract 

The energy of a simple graph was first inspired by the Hückel Molecular Orbital theory to estimate the 

energy associated with π-electron orbitals of molecules. In this research, the energy and the minimum 

degree energy of the Cayley graph associated to the dihedral group of order six and eight with subsets 

of order one have been computed using some concepts and properties in graph theory, group theory, 

and linear algebra. The Cayley graph is constructed based on each subset of the dihedral group. Then, 

the adjacency matrix and the minimum degree matrix are determined to obtain their eigenvalues.  

Finally, the energy and the minimum degree energy of the Cayley graphs are computed and presented. 

The results show that the energy and the minimum degree energy of the Cayley graph associated to 

the dihedral group of order six and eight with subsets of order one are the same. Besides, the energies 

obtained are all even. 

Keywords: Cayley graph; energy of graph; dihedral group; graph theory; group theory 

 

Introduction 

The study on Cayley graphs was first initiated by Arthur Cayley in 1878, and since then, numerous 

researchers have shown their interest in this field. For instance, Adiga and Ariamanesh have 

specifically studied the Cayley graphs on symmetric groups in 2012 [1]. Furthermore, Ramaswamy 

and Veena have determined the energy of unitary Cayley graphs [2] which was extended from 

Balakrishnan in 2004 [3]. 

Meanwhile, the study on the energy of a graph was first considered by Gutman in 1978 [4]. Gutman 

defined the energy of a graph as the sum of the absolute values of the eigenvalues of the adjacency 

matrix of the graph, which was inspired from the Hückel Molecular Orbital Theory (HMO) proposed in 

the 1930s by Hückel. Chemists have employed the Hückel Molecular Orbital Theory to estimate the 

energy levels associated with π-electron orbitals within conjugated hydrocarbons. 

Adiga and Swamy first described the minimum degree energy of a graph as the total of the 

absolute values of the eigenvalues of the minimum degree matrix of the graph in 2010 [5]. 

Subsequently, extensive research has been conducted on the minimum degree energy of certain 

graphs of groups. For instance, Basavanagoud and Jakkannavar have computed the minimum degree 

energy of regular graphs and obtain bounds for the largest minimum degree eigenvalue and minimum 

degree energy [6]. Since then, numerous authors including Rao [7], and Romdhini and Nawawi [8], 

have expanded the research on the minimum degree energy of certain graph of groups.  

In this research, the energy and the minimum degree energy of the Cayley graphs associated to 

the dihedral groups of order six and eight with subsets of order one are determined. First, the Cayley 

graphs are constructed with the subset S, then the adjacency matrix and the minimum degree matrix 

for the graphs are determined, and lastly the eigenvalues of their matrix are obtained which are used 

to compute the energy and the minimum degree energy of the Cayley graphs. 

This paper is structured as follows: in Section 1, previous studies on Cayley graphs, energy and 

minimum degree energy of a graph are discussed, while in Section 2, the preliminary results that are 

being used for this study are included. In Section 3, the main results are presented in the form of 

propositions. Finally, Section 4 gives the conclusion of the main results. 
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Preliminaries 

In this section, some definitions that are used in this research are included. 

 

Definition 1 [9] Dihedral Groups 

The dihedral group of order 2𝑛, denoted by 𝐷2𝑛, is the group of symmetries of an 𝑛-gon. These 

symmetries include rotations, denoted by a, and reflections, denoted b. The group presentation is 𝐷2𝑛 =

 ⟨𝑎, 𝑏| 𝑎𝑛 = 𝑏2 = 1 𝑎𝑛𝑑 𝑏𝑎𝑏 = 𝑎−1⟩. 

 

Definition 2 [10] Cayley Graph of a Group 

Let 𝐺 be a finite group with identity 1. Let 𝑆 be a subset of 𝐺 satisfying 1 ∉  𝑆 and that 𝑆 = 𝑆−1; that is, 

𝑠 ∈  𝑆 if and only if 𝑠−1 ∈  𝑆 . The Cayley graph 𝐶𝑎𝑦(𝐺,  S) on 𝐺 with subset 𝑆 is defined as follows: 

• the vertices are the elements of 𝐺. 

• there is an edge joining 𝑣1 and 𝑣2 if and only if 𝑣2 = 𝑠𝑣1  for some 𝑠 ∈  𝑆. 

The set of edges is denoted as 𝐸(𝐶𝑎𝑦(𝐺,  𝑆)) = {{𝑣𝑖,𝑣𝑖,}|𝑣𝑖  is adjacent to 𝑣𝑗}. 

Remark: The relation between the two vertices can also be rewritten as 𝑣2𝑣1
−1 = 𝑠 for some s ∈ S. 

 

Definition 3 [10] Complete Graph 

A complete graph 𝐾𝑛 has 𝑛 vertices and each of it is adjacent to all of the others. 

 

Definition 4 [11] Union of Graph 

Let 𝐺1 and 𝐺2 be subgraphs of a graph 𝐺. The union 𝐺1 ∪ 𝐺2 of 𝐺1 and 𝐺2 is the subgraph with vertex 

set 𝑉(𝐺1) ∪ 𝑉(𝐺2) and edge set 𝐸(𝐺1) ∪ 𝐸(𝐺2). 

 

Note: The union of m copies of 𝐾𝑛, that is 𝐾𝑛 ∪ 𝐾𝑛 ∪ ⋯∪ 𝐾𝑛, is denoted by 𝑚𝐾𝑛. 

 

              m copies 

 

Definition 5 [12] Adjacency Matrix  

Let 𝑅 be a graph with 𝑉(𝑅)  =  {1, 2, . . . , 𝑛} and 𝐸(𝑅)  =  {𝑒1, 𝑒2, . . . , 𝑒𝑚}. The adjacency matrix of 𝑅, 

denoted by 𝐴(𝑅), is the 𝑛 ×  𝑛 matrix defined as follows: The rows and the columns of 𝐴(𝑅) are indexed 

by 𝑉(𝑅). If 𝑖 ≠  𝑗 then the (𝑖, 𝑗)-entry of 𝐴(𝑅) is 0 for vertices 𝑖 and 𝑗 non-adjacent, and the (𝑖, 𝑗)-entry is 

1 for 𝑖 and 𝑗 adjacent. The (𝑖, 𝑖)-entry of 𝐴(𝑅) is 0 for 𝑖 =  1, 2, . . . , 𝑛.  

 

Definition 6 [12] Eigenvalues of a Matrix  

The roots of the characteristic equation 𝑑𝑒𝑡(𝐴 −  𝜆𝐼) = 0 of 𝐴 are called the eigenvalues of 𝐴. 

 

Definition 7 [12] Energy of a Graph  

Consider R to be a graph and 𝜆1, 𝜆2, … , 𝜆𝑛 be the eigenvalues of R. The energy of R, 𝜀(𝑅), is defined as 

follows: 

𝜀(𝑅) = ∑|𝜆𝑖|

𝑛

𝑖=1

. 

 

Definition 8 [5] Minimum Degree Matrix  

Let 𝑅 be a simple graph with 𝑛 vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and let 𝑑𝑖 = deg (𝑣𝑖) be the degree of 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛. 

The minimum degree matrix of the graph 𝑅 is defined by 𝑀(𝑅) = [𝑑𝑖𝑗], where 

𝑑𝑖𝑗 = {
 min{𝑑𝑖 , 𝑑𝑗} ,

 0,                   
      

if 𝑣𝑖  and 𝑣𝑗  are adjacent;

otherwise.                         
   

 

The characteristic polynomial of the minimum degree matrix 𝑀(𝑅) is defined by 

𝑔(𝑅 ∶  𝜆) =  𝑑𝑒𝑡(𝜆𝐼 –  𝑀(𝑅)). 

Definition 9 [5] Minimum Degree Energy 
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Let 𝑀(𝑅) be the minimum degree matrix of a graph 𝑅 and 𝜆1, 𝜆2, … , 𝜆𝑛 be its eigenvalues. Then, the 

minimum degree energy of the graph 𝑅 is defined as 

𝜀𝑀(𝑅) = ∑|𝜆𝑖|

𝑛

𝑖=1

. 

 

Main results 

In this section, the main results are specified in terms of propositions. The Cayley graphs associated to 

the dihedral groups 𝐷6 and 𝐷8 with subsets 𝑆 of order one are constructed. Then, the energy and the 

minimum degree energy of the Cayley graphs are obtained.  

 

3.1 The Cayley Graph Associated to the Dihedral Group of Order Six and Eight with Subsets of Order 

One 

In this section, the Cayley graphs associated to the dihedral group of order six and eight with subsets 

𝑆 of order one are constructed. From Definition 1, 𝐷6 = ⟨𝑅0, 𝑅120, 𝑅240, 𝐿1, 𝐿2, 𝐿3⟩, while the dihedral group 

of order eight, 𝐷8 = ⟨𝑅0, 𝑅90, 𝑅180, 𝑅270, 𝑉, 𝐷′, 𝐻, 𝐷⟩. By Definition 2, the subsets of 𝐷6 of order one are 

{𝐿1}, {𝐿2} and  {𝐿3}, while the subsets of 𝐷8 of order one are {𝑉}, {𝐷′}, {𝐻}, {𝐷} and {𝑅180}. The results of 

Cayley graphs are presented in two propositions. 

 

Proposition 1 Let 𝐷6 be the dihedral group of order six. Then, the Cayley graph of 𝐷6 with subset S of 

order one, 𝐶𝑎𝑦(𝐷6, 𝑆) = 3𝐾2. 

 

Proof Let 𝐷6 be the dihedral group of order six, 𝐷6 = ⟨𝑅0, 𝑅120, 𝑅240, 𝐿1, 𝐿2, 𝐿3⟩, and 𝐶𝑎𝑦(𝐷6, 𝑆) be the 

Cayley graph of 𝐷6 with subsets 𝑆 of order one, namely {𝐿1}, {𝐿2} and {𝐿3}. First, let 𝑆 = {𝐿1}. By 

Definition 2, the vertex set of the Cayley graph, 𝑉(𝐶𝑎𝑦(𝐷6, {𝐿1})) = 𝐷6 = ⟨𝑅0, 𝑅120, 𝑅240, 𝐿1, 𝐿2, 𝐿3⟩. Next, 

to determine the edges of the graph, the Cayley table of 𝐷6 (Table 1) is used. From Definition 2, there 

is an edge joining the vertices 𝑣1 and 𝑣2 if and only if 𝑣2 = 𝑠𝑣1 for 𝑠 ∈  {𝐿1}, and 𝑣1, 𝑣2 in 𝐷6, or in short 

𝑣2 = 𝐿1𝑣1.  

 

Table 1 The Cayley table of 𝐷6 for subset {𝐿1} 

 𝑅0 𝑅120 𝑅240 𝐿1 𝐿2 𝐿3 

𝑅0 𝑅0 𝑅120 𝑅240 𝐿1 𝐿2 𝐿3 

𝑅120 𝑅120 𝑅240 𝑅0 𝐿3 𝐿1 𝐿2 

𝑅240 𝑅240 𝑅0 𝑅120 𝐿2 𝐿3 𝐿1 

𝐿1 𝐿1 𝐿2 𝐿3 𝑅0 𝑅120 𝑅240 

𝐿2 𝐿2 𝐿3 𝐿1 𝑅240 𝑅0 𝑅120 

𝐿3 𝐿3 𝐿1 𝐿2 𝑅120 𝑅240 𝑅0 

 

 In Table 1, the orange highlighted rows represent 𝑣1, the yellow highlighted rows represent 𝑣2, 

while the green highlighted cell represents 𝑠 ∈ {𝐿1}, which show that 𝑣2 = 𝑠𝑣1, 𝑠 ∈  {𝐿1}. Since 𝐿1 =

𝐿1𝑅0, thus 𝑅0 is adjacent to 𝐿1. Since 𝐿2 = 𝐿1𝑅120, thus 𝑅120 is adjacent to 𝐿2. Since 𝐿3 = 𝐿1𝑅240, thus 

𝑅240 is adjacent to 𝐿3. Thus, the edge set of the Cayley graph, 𝐸(𝐶𝑎𝑦(𝐷6, {𝐿1})) =

{{𝑅0, 𝐿1}, {𝑅120, 𝐿2}, {𝑅240, 𝐿3}}. Hence, 𝐶𝑎𝑦(𝐷6, {𝐿1}) = 3𝐾2, which can be drawn as in Figure 1. 

 

 

 

 

 

 

 

 

   𝑅0                       𝑅120                     𝑅240      
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   𝐿1                         𝐿2                         𝐿3        

Figure 1 The Cayley graph of 𝐷6 with the subset {𝐿1}. 

 

 The proof for 𝐶𝑎𝑦(𝐷6, {𝐿2}) and 𝐶𝑎𝑦(𝐷6, {𝐿3}) is similar to that of 𝐶𝑎𝑦(𝐷6, {𝐿1}). Hence, the Cayley 

graph of 𝐷6 with subset S of order one, 𝐶𝑎𝑦(𝐷6, 𝑆) = 3𝐾2.                                                                       

 

Proposition 2 Let 𝐷8 be the dihedral group of order eight. Then, the Cayley graph of 𝐷8 with subset S 

of order one, 𝐶𝑎𝑦(𝐷8 , 𝑆) = 4𝐾2. 

 

Proof Let 𝐷8 be the dihedral group of order eight, 𝐷8 = ⟨𝑅0, 𝑅90, 𝑅180, 𝑅270, 𝑉, 𝐷′, 𝐻, 𝐷⟩, and 𝐶𝑎𝑦(𝐷8, 𝑆) be 

the Cayley graph of 𝐷8 with subsets 𝑆 of order one, namely {𝑉}, {𝐷′}, {𝐻}, {𝐷} and {𝑅180}. First, let 𝑆 =

{𝑉}. By Definition 2, the vertex set of the Cayley graph, 𝑉(𝐶𝑎𝑦(𝐷8, { 𝑉})) = 𝐷8 =

⟨𝑅0, 𝑅90, 𝑅180, 𝑅270, 𝑉, 𝐷′, 𝐻, 𝐷⟩. Next, to determine the edges of the graph, the Cayley table of 𝐷8 (Table 

2) is used. From Definition 2, there is an edge joining the vertices 𝑣1 and 𝑣2 if and only if 𝑣2 = 𝑠𝑣1 for 

𝑠 ∈  {𝑉}, and 𝑣1, 𝑣2 in 𝐷8, or in short 𝑣2 = 𝑉𝑣1.  

 

Table 2 The Cayley table of 𝐷8 for subset {𝑉} 

 𝑅0 𝑅90 𝑅180 𝑅270 𝑉 𝐷′ 𝐻 𝐷 

𝑅0 𝑅0 𝑅90 𝑅180 𝑅270 𝑉 𝐷′ 𝐻 𝐷 

𝑅90 𝑅90 𝑅180 𝑅270 𝑅0 𝐷 𝑉 𝐷′ 𝐻 

𝑅180 𝑅180 𝑅270 𝑅0 𝑅90 𝐻 𝐷 𝑉 𝐷′ 

𝑅270 𝑅270 𝑅0 𝑅90 𝑅180 𝐷′ 𝐻 𝐷 𝑉 

𝑉 𝑉 𝐷′ 𝐻 𝐷 𝑅0 𝑅90 𝑅180 𝑅270 

𝐷′ 𝐷′ 𝐻 𝐷 𝑉 𝑅270 𝑅0 𝑅90 𝑅180 

𝐻 𝐻 𝐷 𝑉 𝐷′ 𝑅180 𝑅270 𝑅0 𝑅90 

𝐷 𝐷 𝑉 𝐷′ 𝐻 𝑅90 𝑅180 𝑅270 𝑅0 

 

 In Table 2, since 𝑉 = 𝑉𝑅0, thus 𝑅0 is adjacent to 𝑉. Since 𝐷′ = 𝑉𝑅90, thus 𝑅90 is adjacent to 𝐷′. 

Since 𝐻 = 𝑉𝑅180, thus 𝑅180 is adjacent to 𝐻. Since 𝐷 = 𝑉𝑅270, thus 𝑅270 is adjacent to 𝐷. Thus, the edge 

set of the Cayley graph, 𝐸(𝐶𝑎𝑦(𝐷8, {𝑉})) = {{𝑅0, 𝑉}, {𝑅90, 𝐷
′}, {𝑅180, 𝐻}, {𝑅270, 𝐷}}. Hence, 𝐶𝑎𝑦(𝐷8, {𝑉}) =

4𝐾2, which can be drawn as in Figure 2. 

 

 

 

 

 

  

 

 

Figure 2 The Cayley graph of 𝐷8 with the subset {𝑉}. 

 

 The proof for 𝐶𝑎𝑦(𝐷8, {𝐷′}), 𝐶𝑎𝑦(𝐷8, {𝐻}) and 𝐶𝑎𝑦(𝐷8, {𝐷})  is similar to that of 𝐶𝑎𝑦(𝐷8, {𝑉}). 

Hence, the Cayley graph of 𝐷8 with subset S of order one, 𝐶𝑎𝑦(𝐷8, 𝑆) = 4𝐾2                                

 

3.2 The Energy of the Cayley Graph Associated to the Dihedral Group of Order Six and Eight with 

Subsets of Order One 

𝑉 

 

𝐻 𝐷 

𝑅0 𝑅180 𝑅270 𝑅90 

𝐷′ 
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In this section, the energy is computed and presented for the Cayley graph associated to the dihedral 

group of order six and eight with subsets of order one. 

 

Proposition 3 Let 𝐷6 be the dihedral group of order six. Then, the energy of the Cayley graph of 𝐷6 

with subset 𝑆 of order one, 𝜀(𝐶𝑎𝑦(𝐷6, 𝑆)) = 6. 

 

Proof Let 𝑅 be a graph, 𝐷6 be the dihedral group of order six and 𝐶𝑎𝑦(𝐷6 , 𝑆) be the Cayley graph of 𝐷6 

with the subset 𝑆 of order one. First, let 𝑆 = {𝐿1}. By Definition 5 of the adjacency matrix, the rows and 

columns of 𝐴(𝑅) are indexed by 𝑉(𝑅), namely 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 where 𝑣1 = 𝑅0, 𝑣2 = 𝑅120, 𝑣3 =

𝑅240, 𝑣4 = 𝐿1, 𝑣5 = 𝐿2, 𝑣6 = 𝐿3. Since 𝐶𝑎𝑦(𝐷6, {𝐿1}) = 3𝐾2, hence the corresponding adjacent vertices 

have the entry 1, otherwise, the entries are 0. Thus, the adjacency matrix of 𝐶𝑎𝑦(𝐷6, {𝐿1}) is obtained 

as follows: 

                              𝑣1  𝑣2   𝑣3   𝑣4   𝑣5  𝑣6 

𝐴(𝑅) =

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

 

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0]

 
 
 
 
 

. 

 

Then, the characteristic polynomial of 𝐴(𝑅), 

 𝑓(𝐴(𝑅), 𝜆𝐼) = 𝑑𝑒𝑡(𝐴(𝑅) − 𝜆𝐼) =
|

|

−𝜆 0 0 1 0 0
0 −𝜆 0 0 1 0
0 0 −𝜆 0 0 1
1 0 0 −𝜆 0 0
0 1 0 0 −𝜆 0
0 0 1 0 0 −𝜆

|

|
= (𝜆 + 1)3(𝜆 − 1)3.  

 

 By Definition 6, the eigenvalues are 𝜆1 = 1 with multiplicity 3 and 𝜆2 = −1 with multiplicity 3. By 

Definition 7, the energy of 𝐶𝑎𝑦(𝐷6, {𝐿1}), 𝜀(𝐶𝑎𝑦(𝐷6, {𝐿1})) = 3|1| + 3|−1| = 6. The proof for 

𝜀(𝐶𝑎𝑦(𝐷6, {𝐿2})) and 𝜀(𝐶𝑎𝑦(𝐷6, {𝐿3})) is similar as 𝜀(𝐶𝑎𝑦(𝐷6, {𝐿1})). Hence, the energy of the Cayley 

graph of 𝐷6 with subset 𝑆 of order one, 𝜀(𝐶𝑎𝑦(𝐷6, 𝑆)) = 6.                          

 

Proposition 4 Let 𝐷8 be the dihedral group of order eight. Then, the energy of the Cayley graph of 𝐷8 

with subset 𝑆 of order one, 𝜀(𝐶𝑎𝑦(𝐷8, 𝑆)) = 8. 

 

Proof The method of the proof is similar to the proof in the previous proposition.         

 

3.3 The Minimum Degree Energy of the Cayley Graph Associated to the Dihedral Group of Order Six 

and Eight with Subsets of Order One 

This subsection presents the results in the form of propositions on the minimum degree energy of the 

Cayley graph associated to the dihedral group of order six and eight with subsets of order one. 

 

Proposition 5 Let 𝐷6 be the dihedral group of order six. Then, the minimum degree energy of the Cayley 

graph of 𝐷6 with subset 𝑆 of order one, 𝜀𝑀(𝐶𝑎𝑦(𝐷6, 𝑆)) = 6. 

 

Proof Let 𝑅 be a graph, 𝐷6 be the dihedral group of order six and 𝐶𝑎𝑦(𝐷6 , {𝐿1}) be the Cayley graph of 

𝐷6 with the subset {𝐿1}. By Definition 8 of the minimum degree matrix, the rows and columns of 𝑀(𝑅) 

are indexed by 𝑉(𝑅), namely 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 where 𝑣1 = 𝑅0, 𝑣2 = 𝑅120, 𝑣3 = 𝑅240, 𝑣4 = 𝐿1, 𝑣5 =

𝐿2, 𝑣6 = 𝐿3. The corresponding minimum degree of a vertex has the entry 1, otherwise 0. This is 

because 𝐶𝑎𝑦(𝐷6, {𝐿1}) is the union of three complete graphs of two vertices, 3𝐾2, where the minimum 

degrees of all vertices of 𝐶𝑎𝑦(𝐷6, {𝐿1}) are 1. Thus, the minimum degree matrix of 𝐶𝑎𝑦(𝐷6, {𝐿1}) is 

obtained as follows: 
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𝑀(𝑅) =

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0]

 
 
 
 
 

. 

 

 It can be seen that the minimum degree matrix and the adjacency matrix of the Cayley graph 

associated to the dihedral group of order six for the subset {𝐿1} are the same. Since the minimum 

degree matrix and the adjacency matrix of 𝐶𝑎𝑦(𝐷6, {𝐿1}) are the same, the proof follows from that of 

Proposition 3. Thus, the characteristic polynomial of 𝑀(𝑅) is 𝑔(𝑀(𝑅), 𝜆𝐼) = (𝜆 + 1)3(𝜆 − 1)3 and the 

minimum degree eigenvalues of 𝐶𝑎𝑦(𝐷6, {𝐿1}) are 𝜆1 = 1 with multiplicity 3 and 𝜆2 = −1 with multiplicity 

3. Therefore, by Definition 9, 𝜀𝑀(𝐶𝑎𝑦(𝐷6, {𝐿1})) = 3|1| + 3|−1| = 6. The proof for 𝜀𝑀(𝐶𝑎𝑦(𝐷6, {𝐿2})) and 

𝜀𝑀(𝐶𝑎𝑦(𝐷6, {𝐿3})) is similar as 𝜀𝑀(𝐶𝑎𝑦(𝐷6, {𝐿1})). Hence, the minimum degree energy of the Cayley 

graph of 𝐷6 with subset 𝑆 of order one, 𝜀𝑀(𝐶𝑎𝑦(𝐷6, 𝑆)) = 6.           

 

Proposition 6 Let 𝐷8 be the dihedral group of order eight. Then, the minimum degree energy of the 

Cayley graph of 𝐷8 with subset 𝑆 of order one, 𝜀𝑀(𝐶𝑎𝑦(𝐷8 , 𝑆)) = 8. 

 

Proof The proof is similar to the proof in the previous proposition.          

 

Conclusion 

As a conclusion, the results show that the energy and the minimum degree energy of the Cayley graph 

associated to the dihedral group of order six and eight are the same. Besides, the energies obtained 

are all even. 
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