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Abstract 

This study focuses on the development of a theoretical model to simulate thermal interactions between 

blood and tissue in the human body during blood cooling and rewarming processes. The problem 

addressed is needed for accurate prediction of body and blood temperature changes during clinical 

applications such as managing systemic hypothermia or hyperthermia in patients with brain injuries or 

during cardiac surgeries. The methodology integrates the Pennes bioheat equation with a heat transfer 

equation for blood, creating a model that accounts for the energy balance among blood and tissue, 

including the influence of external cooling or rewarming. The research process involved validating the 

model's accuracy through theoretical analysis and comparison with a simple lumped analysis. The 

results show that the model accurately represents how heat is transferred between blood and tissue, 

making it reliable for predicting temperature changes in medical situations. However, limitations include 

the simplified body geometry and assumptions of constant physiological parameters, which may not 

fully capture the complex dynamics of heat transfer in a real human body. Additionally, the model does 

not consider the rewarming effects of venous blood due to counter current heat exchange, and the 

explicit numerical method imposes restrictions on the time step to avoid oscillations. Overall, this 

research offers a strong basis for developing better temperature management strategies in medical 

treatments and physiological studies. 

Keywords: Pennes bioheat equation; heat transfer; body temperature prediction; numerical 

modelling. 

 

1. Introduction 

Bioheat transfer is an important area that combines engineering, biology, and medicine to help us 

understand how heat moves inside living things. Seminal works like the Pennes bioheat [7], Weinbaum 

and Jiji's simplified bioheat equation [14] and studies on heat transfer in perfused biological tissues [4] 

provide foundational frameworks for analysing heat distribution in biological systems. Analytical 

solutions, exemplified in [1] aid in predicting tissue temperature profiles, while numerical simulations, 

as seen in [8] enhance comprehension of thermal dynamics at the tissue level. 

This project investigates the effects of sinusoidal heat flux on transient temperature distribution 

in biological tissue, addressing challenges in analytical solutions for the Pennes bioheat equation under 

periodic heat flow conditions. By deriving exact solutions, this study aims to deepen understanding of 

tissue response to periodic heat flux and its practical implications in medical physics and engineering. 

Through this research, insights into thermal interactions between blood and tissue, numerical methods 

for solving the Pennes bioheat model analytically, and accurate prediction of temperature changes 

during thermal interventions will be garnered, contributing to advancements in medical engineering and 

physics and ultimately improving patient care and treatment outcomes. 

Bioheat transfer combines engineering, biology, and medicine to study how heat moves through 

biological systems. This understanding is crucial for treatments like hyperthermia for cancer and thermal 

therapy. Early studies, like Bernard's tests in 1876 [13], highlight the long-standing interest in the 
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relationship between blood vessels and tissue. Advances in computational techniques have enabled 

the development of complex models to analyse temperature distributions in biological systems.  

Theoretical models, like continuum and one-dimensional models, are essential for 

understanding blood flow's role in bioheat transfer. One-dimensional models, as explained by [2], offer 

detailed insights by analysing heat transmission along specific tissue orientations, crucial for capturing 

localized temperature variations accurately [16]. Researchers combine these theoretical models with 

experimental data and clinical insights to push the boundaries of bioheat transfer research, leading to 

new thermal therapies and medical interventions. In conclusion, bioheat transfer integrates biology, 

medicine, and engineering to understand heat movement in living tissues. The Pennes bioheat equation 

is central to this field, and ongoing efforts aim to enhance temperature predictions and optimize thermal 

treatment strategies. 

When it comes to bioheat transfer, it's very important to make sure that theory models are 
correct and can be used in real-world scenarios. Harold J. Pennes came up with the Pennes bioheat 
equation in 1948. It is one of the most important tools in bioheat transfer modelling because it adds 
blood flow effects to tissue temperature estimates to help us understand how biological tissues react to 
heat [7]. It is crucial to validate this equation through theoretical investigations to evaluate its accuracy 
in various physiological situations, improve thermal treatment procedures, and advance research on 
bioheat transfer. Moreover, one-dimensional modelling approaches, such as the simplified Pennes 
bioheat equation formulation, have been extensively explored to enhance predictive accuracy and 
validate their effectiveness in capturing localized temperature variations [5]. 
 

A thorough comprehension of heat transmission in living tissues is provided by these theoretical 

frameworks, along with improvements in one-dimensional modelling methods [6]. Research conducted 

by [16] has enhanced bioheat transfer models by examining one-dimensional modelling techniques for 

localized temperature variations. The validation process, especially analytical solutions, helps us learn 

more about bioheat transfer and makes it possible to create more effective thermal therapies for medical 

treatments, which eventually improves patient outcomes and safety in healthcare facilities. 

In 1948, Pennes developed the Pennes bioheat equation [7], which has since become an 
essential model in the field of bioheat transfer. It explains the complex relationship between blood flow 
and tissue temperature. The analytical solutions to this equation have been studied by researchers to 
better understand the processes of heat transfer in biological systems [14]. Significant contributions by 
Weinbaum and Jiji challenged previous assumptions and highlighted the importance of counter current 
heat exchange in tissue, revolutionizing our perception of heat transfer in microvascular blood tissue 
[14]. Chato, Gupta & Johnson conducted studies that highlighted the significance of vascular 
architecture in heat transfer [3] [6]. They emphasised how blood vessels play a crucial role in affecting 
temperature distributions within biological systems. 
 

Smith examined early studies on blood vascular and tissue interactions in bioheat transfer to 
improve our understanding of thermal dynamics in biological tissues [13]. Researchers have improved 
the analytical solutions of the Pennes bioheat equation to estimate blood and body temperature, 
advancing biomedical applications and healthcare. Bioheat transfer research combine early and 
modern findings to improve our understanding of heat transmission in living things. 
 

Changes in body and blood temperature need to be understood and predicted for many biological 
uses, like thermal therapy and adapting to new environments. Extensive research has been conducted 
on models such as the Pennes bioheat equation and continuous models that account for blood flow 
effects in heat conduction equations. Pennes' 1948 bioheat equation has been foundational in this field 
[7]. Lemon’s found that blood artery size impacts heat transport, and recent computational 
developments have improved vascular models [11]. The studies conducted by Raaymakers and Chato 
investigated the process of heat transfer between blood arteries and the tissues around them, resulting 
in enhanced accuracy in prediction [3] [12]. According to Wissler, it is crucial to extensively validate 
theoretical models [17]. Additionally, Weinbaum proposed improvements to the Pennes perfusion term 
for better precision in areas with larger blood vessels [16]. These combined efforts enhance our ability 
to predict temperature profiles in biological tissues, benefiting therapies and environmental physiology. 
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2. Methodology 

 

To derive the three-dimensional heat conduction equation from its one-dimensional form, we start with 

the one-dimensional equation: 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
 (1) 

 Here, 𝑢(𝑥, 𝑡) is the temperature distribution,𝛼 is the thermal diffusivity, and 
𝜕𝑢

𝜕𝑡
 is the rate of 

temperature change over time. 
𝜕2𝑢

𝜕𝑥2 represents the spatial temperature variation. Extending this to three 

dimensions, we consider heat transfer in the x, y, and z directions, leading to the three-dimensional 
heat conduction equation: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= ∇. (𝑘∇𝑇) + 𝑞 (2) 

where, 𝜌 is tissue density, c is tissue specific heat, T is temperature and t are time, k is the 

tissue thermal conductivity, q is the heat generation rate. To model biological tissues accurately, we 

add a term 𝑞𝑚 for metabolic heat generation: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= ∇. (𝑘∇𝑇) + 𝑞𝑚 (3) 

The impact of blood perfusion is included, considering local blood perfusion rate 𝜔, blood 

density 𝜌𝑏, blood specific heat 𝑐𝑏, and the temperature difference between tissue and blood (𝑇 − 𝑇𝑏): 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= ∇. (𝑘∇𝑇) + 𝑞𝑚 − 𝜔𝜌𝑏𝑐𝑏(𝑇 − 𝑇𝑏) (4) 

This equation, known as the Pennes Bioheat Equation, combines heat conduction, metabolic 
heat generation, and blood perfusion to describe temperature distribution in biological tissues. It is 
essential for understanding thermal interactions in living systems and developing thermal therapies. 

 To understand how body temperature is distributed, we use models like a simple cylinder or a 

three-part model for the torso, head, and limbs. The body loses heat through evaporation, convection, 

and radiation at the skin surface. The Pennes bioheat equation helps explain this by considering blood 

flow as a heat source. Metabolism generates heat within tissues, and blood flow can either heat or cool 

the tissue, depending on the temperature difference between the blood and the tissue. The temperature 

distribution in body tissue is governed by: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝑘𝑡∇2𝑇𝑡 + 𝜌𝑐𝜔(𝑇𝑎 − 𝑇𝑡) (5) 

This equation is solved with specific boundary and initial conditions. The skin boundary 
condition considers environmental temperature 𝑇𝑎𝑖𝑟  and a convection coefficient ℎ, accounting for 
convection, radiation, and evaporation. In steady state, the body maintains a balance between heat 
gain and loss. The total heat transfer from blood to tissue is: 

𝜌𝑐𝑄𝑏𝑙𝑜𝑜𝑑−𝑡𝑖𝑠𝑠𝑢𝑒,0 = ∭ 𝜌𝑐𝜔𝑎𝑣𝑔(𝑇𝑎0 − �̅�𝑡0)𝑉𝑏𝑜𝑑𝑦 = 0

𝑏𝑜𝑑𝑦 𝑣𝑜𝑙𝑢𝑚𝑒

 (6) 

 During steady state, arterial blood temperature 𝑇𝑎 equals the average tissue temperature �̅�𝑡. 

During changes like cooling or warming, the heat transfer from blood to tissue is given by: 

𝑄𝑏𝑙𝑜𝑜𝑑−𝑡𝑖𝑠𝑠𝑢𝑒,0 = ∭ 𝜌𝑐𝜔(𝑇𝑎0 − 𝑇𝑡0)𝑑𝑉𝑏𝑜𝑑𝑦 ≠ 0

𝑏𝑜𝑑𝑦 𝑣𝑜𝑙𝑢𝑚𝑒

 (7) 

This equation helps predict body temperature changes under different conditions, aiding in clinical 

applications and thermal therapy. To manipulate body temperature during clinical applications, 

external heating or cooling of the blood can be employed using techniques like intravascular catheters 

or intravenous fluid infusion. Blood is treated as a lumped system, with an average volume of around 

5 litters [17]. The energy change in the blood due to temperature variation can be expressed as: 

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑[𝑇𝑎(𝑡 + ∆𝑡) − 𝑇𝑎(𝑡)]/∆𝑡 ≈ 𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝑑𝑇𝑎

𝑑𝑡
 (8) 
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 The energy change in blood results from external heating or cooling (𝑄𝑒𝑥𝑡) and heat exchange 

with body tissue (𝑄𝑏𝑙𝑜𝑜𝑑−𝑡𝑖𝑠𝑠𝑢𝑒). The governing equation for blood temperature is: 

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝑑𝑇𝑎

𝑑𝑡
= 𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝑄𝑏𝑙𝑜𝑜𝑑−𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎 − �̅�𝑡) · (9) 

To accurately predict temperature distribution in both body tissue and blood, solve this equation 
along with the Pennes bioheat equation Eq. (5). Solving these equations together allows for a 
comprehensive understanding of the thermal dynamics within the human body, considering the 
interaction between blood and tissue temperatures.  
 
3. Results and discussion 

 

In thermal physiology and biomedical research, we simplify the analysis of temperature changes in 

body tissue and blood by focusing on key terms in the equations. The primary equation for tissue 

temperature Eq. (5) is simplified to: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= ∇. (𝑘∇𝑇) + 𝑞𝑚 − 𝜔𝜌𝑏𝑐𝑏(𝑇 − 𝑇𝑏) (10) 

 This focuses on the dynamic changes in tissue temperature 𝜌𝑐
𝜕𝑇

𝜕𝑡
 and the convective heat 

transfer between blood and tissue 𝜔𝜌𝑏𝑐𝑏(𝑇 − 𝑇𝑏). The energy change in blood due to external heating 

or cooling 𝑄𝑒𝑥𝑡  and heat loss to body tissue 𝑄𝑏𝑙𝑜𝑜𝑑−𝑡𝑖𝑠𝑠𝑢𝑒 is described by: 

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝑑𝑇𝑎

𝑑𝑡
= 𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎 − �̅�𝑡)  

 

(11) 

 This simplified model highlights the essential factors influencing temperature dynamics in blood 

and tissue during clinical procedures. The governing equation for blood temperature is a first-order 

ordinary differential equation. It can be solved numerically as most parameters in Equation (9) vary 

with time. We use the finite difference method to discretize the time derivative, employing the explicit 

method to avoid oscillations and maintain physical accuracy. The explicit forward-difference 

approximation is used as follows: 

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝑑𝑇𝑎

𝑑𝑡
= 𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎 − �̅�𝑡) (12) 

Discretizing Eq. (9) with the explicit method: 

𝑇𝑎
𝑃+1 = 𝑇𝑎

𝑃 +
∆𝑡

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑
[𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎

𝑃 − �̅�𝑡
𝑃)] (13) 

Where 𝑇𝑎
𝑃+1 represents the blood temperature at the next time step, 𝑇𝑎

𝑃 is the current blood 

temperature, and ∆𝑡 is the time interval. This equation updates the blood temperature at each time step 

in the simulation. To avoid oscillations, the time step must satisfy: 

1 −
𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦∆𝑡

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑
≥ 0 𝑜𝑟 ∆𝑡 ≤

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦

 (14) 

The discretized equation for 𝑇𝑎 using the implicit scheme can be written as, 

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑(𝑇𝑎
𝑃+1 − 𝑇𝑎

𝑃) = ∆𝑡𝑄𝑒𝑥𝑡(𝑇𝑎
𝑃+1) − ∆𝑡 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎

𝑃+1) + ∆𝑡 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(�̅�𝑡
𝑃) (15) 

(𝑇𝑎
𝑃+1) =  

𝜌
𝑏𝑙𝑜𝑜𝑑

𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑(𝑇𝑎
𝑃) +  ∆𝑡 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(�̅�𝑡

𝑃
)

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑 − ∆𝑡{𝑄𝑒𝑥𝑡 +  𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦}
 (16) 

 

In this example, we apply the thermal model to a blood cooling scenario using a small tube in 
the femoral vein, which has been clinically used to reduce temperatures in stroke or head-injured 
patients. The cooling device has a maximum capacity of 100 W. We consider a male weighing 81 kg 
with a body volume of 0.07421 m³. Two body geometries are tested, a simple cylinder (0.232 m in 
diameter, 1.8 m tall, surface area 1.312 m²) and a more realistic form with limbs, torso, neck, and head 
(surface area 1.8 m²). Using Mosteller's formula, the calculated body surface area is approximately 
2.012 m², aligning closely with the detailed geometry. 
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Figure 1 Schematic Diagram of a Simplified Human 
Body Geometry 

 

Figure 2 Schematic Diagram of the Detailed 
Human Body Geometry

 The average stroke volume is 0.7 liters, and the heart rate is 75 beats per minute. The average 

blood perfusion rate is 6.773 ml/min per 100g of tissue or 0.001129 s⁻¹, based on a total body mass of 

81 kg. For a simple one-compartment model, the average metabolic heat generation rate is estimated 

at 1250 W/𝑚3, based on a daily food intake of 2000 kCal/day. Clothing can be modelled as thermal 

resistance, contributing to the total heat transfer coefficient h. We assume 𝜔, ℎ, and 𝑇𝑎𝑖𝑟  remain 

constant during cooling. The starting blood temperature is 37°C. 

 

 In the steady state, the convection heat transfer coefficient h is 4.7 W/𝑚2 °C for the detailed 

model and 6.3 W/𝑚2 °C for the simple model, corresponding to different body surface areas. The normal 

body temperature 𝑇0 equals the blood temperature 𝑇𝑎0. For stable energy balance, biological heat 

generated inside the body must be dissipated through convection and radiation. Steady-state body 

temperatures range from 37.275°C in the brain to 34°C at the fingertips, with the highest temperature 

typically in the brain due to its high metabolic heat generation. 

 

 
Figure 3 Initial Steady State Temperature Contours of the Human Body in Simple Geometry 

 

Figure 4 Initial Steady State Temperature Contours of the Human Body in Detailed Geometry 

The cooling device has a capacity of around 100 W, so external cooling to the blood 𝑄𝑒𝑥𝑡 is modelled 

as -100 W. The discretized equation for arterial temperature 𝑇𝑎  using an explicit scheme is like Eq. 

(13), 
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𝑇𝑎
𝑃+1 = 𝑇𝑎

𝑃 +
∆𝑡

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑
[𝑄𝑒𝑥𝑡(𝑇𝑎) − 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(𝑇𝑎

𝑃 − �̅�𝑡
𝑃)]  

In this calculation, ∆𝑡 is 60 seconds, which satisfies Eq. (14), 

1 −
𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦∆𝑡

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑
≥ 0 𝑜𝑟 ∆𝑡 ≤

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑

𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦

 

The discretized equation for 𝑇𝑎  using the implicit scheme is like Eq. (16), 

(𝑇𝑎
𝑃+1) =  

𝜌
𝑏𝑙𝑜𝑜𝑑

𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑(𝑇𝑎
𝑃) +  ∆𝑡 𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦(�̅�𝑡

𝑃
)

𝜌𝑏𝑙𝑜𝑜𝑑𝑐𝑏𝑙𝑜𝑜𝑑𝑉𝑏𝑙𝑜𝑜𝑑 − ∆𝑡{𝑄𝑒𝑥𝑡 +  𝜌𝑐�̅�𝑉𝑏𝑜𝑑𝑦}
 

The time ∆𝑡 is also 60 seconds. The arterial blood temperature over the first 20 minutes of 

cooling is shown in Figures 5 and 6. To minimize error in the time derivative approximation, the time 

step should be less than 60 seconds. Using the implicit approach, the arterial temperature can drop by 

up to 0.737°C in the first 20 minutes. In the detailed model, there's a significant initial temperature drop, 

followed by a stable decay rate of about 0.019°C/min. The arterial temperature is predicted to drop to 

35.5°C after one hour and 34.4°C after two hours. 

Table 1 lists the parameters used in the MATLAB script to simulate blood temperature changes 

during cooling using both implicit and explicit schemes. 

Table 1: Parameters used in Both Models. 
Parameter Symbol Value Units 

Density of blood 𝜌𝑏𝑙𝑜𝑜𝑑  1060 Kg/𝑚3 
Specific heat of blood 𝐶𝑏𝑙𝑜𝑜𝑑 3800 J/(kg°C) 
Volume of blood 𝑉𝑏𝑙𝑜𝑜𝑑  0.005 𝑚3 
External cooling rate 𝑄𝑒𝑥𝑡 -100 W 
Volumetric average blood perfusion rate  
(simple geometry) 

𝜔 0.001129 1/s 

Volumetric average blood perfusion rate  
(detailed geometry) 

𝜔𝑑𝑒𝑡𝑎𝑖𝑙  0.0015 1/s 

Initial arterial blood temperature 𝑇𝑎0 37 °𝐶 
Time step ∆𝑡 60 s 
Total simulation time 𝑡𝑡𝑜𝑡𝑎𝑙 20 * 60 s 
Number of steps 𝑛𝑠𝑡𝑒𝑝𝑠 𝑡𝑡𝑜𝑡𝑎𝑙/∆𝑡 - 

Specific heat of body tissue 𝜌 3500 J/(kg°C) 
Density of body tissue 𝐶 1000 Kg/𝑚3 
Volume of body tissue 𝑉𝑏𝑜𝑑𝑦 0.1 𝑚3 

 

 

Figure 5 Simulated Blood Temperature Changes During the Cooling using Both Implicit and Explicit 
Schemes. (a) the Simple Model and (b) the Detailed Model. 

In whole-body cooling for stroke or head injury patients, physicians focus on body tissue 

temperature. Figure 6 shows the volumetric average body temperature (𝑇𝑎𝑣𝑔), weighted average body 

temperature (�̅�𝑡), maximum tissue temperature, and minimum skin surface temperature. The difference 

between 𝑇𝑎𝑣𝑔 and �̅�𝑡, is due to their definitions. After 20 minutes of cooling, tissue temperatures drop 

by 0.3 to 0.5°C, almost linearly. Skin temperature drops more slowly, by 0.2°C per 20 minutes. Figure 
7 shows that blood temperature in the detailed model drops quickly at first (about 0.14°C/min) and then 
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stabilizes after 20 minutes. Cooling the entire body, measured by 𝑇𝑎𝑣𝑔, starts slowly and gradually 

catches up, possibly due to the body's inertia in reacting to blood cooling. After the initial fluctuation, 
cooling rates of all temperatures stabilize at around 0.019°C/min (1.15°C/hour). In the simple model, 
cooling rates converge to about 0.018°C/min after 10 minutes. This cooling method can induce mild 
body hypothermia (34°C) within three hours. 

 

Figure 6 Temperature Decays During the Cooling Process Using the Detailed Geometry and Implicit 
Scheme. 

 

Figure 7 Induced Cooling Rates of the Blood Temperature, the Maximum Temperature, the 
Volumetric Average Temperature, and the Weighted Average Temperature. (A) the Detailed Model 

and (B) the Simple Model. 

In Eq. (13), if blood doesn't absorb heat from tissue, the first term indicates external cooling 

rate, expected around 18.9°C/hour, significantly higher than actual cooling rate due to device cooling 

entire body. The second term, representing blood-tissue thermal exchange, depends on blood-tissue 

temperature difference. Initially zero, this difference stabilizes at -2.5°C about 20 minutes into cooling. 

Once stabilized, Eq. (13) right side becomes constant due to steady assumptions. 

Figure 9 shows how body temperature changes with simplified body geometry using implicit 

scheme (60-second time step). Despite different geometries, cooling rates for volumetric average body 

temperature (𝑇𝑎𝑣𝑔), are similar. Simple model lack’s ability to show actual temperature changes during 

cooling. 

 

Figure 8 Difference Between the Blood Temperature and the Weighted Average Body Temperature 
During Cooling 
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Figure 9 The Effect of Model Geometry on the Volumetric Average Body Temperature 

Conclusion 

In conclusion, this study presents a theoretical model for simulating thermal interactions between blood 

and tissue during blood cooling and rewarming processes in the human body. The model, integrating 

the Pennes bioheat equation with a blood heat transfer equation, accurately predicts body and blood 

temperature changes crucial for clinical applications like managing systemic hypothermia or 

hyperthermia. While the model demonstrates reliability, limitations include simplified body geometry and 

assumptions about physiological parameters, potentially impacting real-world accuracy. Future 

research could address these limitations to further enhance temperature management strategies in 

medical treatments and physiological studies. 
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