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Abstract 

This paper focuses on the Laplacian spectrum of the deep enhanced power graph of the generalized 

quaternion group, 𝑄4𝑛. The Laplacian spectrum of a graph is the set of eigenvalues of its Laplacian 

matrix, which provides an important understanding of the graph's structural properties. For a finite group 

𝐺, the deep enhanced power graph is defined as a simple undirected graph whose vertices represent 

all elements of 𝐺 except for the nontrivial central element and two distinct vertices are adjacent if they 

belong to the proper cyclic subgroup. This research starts with the construction of the deep enhanced 

power graph for 𝑄4𝑛, providing a general presentation of its structure, and continues with the derivation 

of its Laplacian matrix. The spectral properties of the Laplacian matrix are then analyzed, identifying 

the eigenvalues and their multiplicities. The result shows that there are five different multiplicities of 

eigenvalues in the Laplacian spectrum of the deep enhanced power graph of the generalized quaternion 

group. 

Keywords: Laplacian spectrum, deep enhanced power graphs, graph of groups, and generalized 

quaternion groups 

 

Introduction 

Researchers can explore the complex relationships between group properties and graph invariants by 

defining graphs based on group elements and their connectivity. As a result, various types of graphs of 

groups have been introduced, including power graphs, commuting graphs, and enhanced power 

graphs. In the power graph, every vertex represents a group element, and an edge joins two vertices if 

one of them is a power of the other (Chattopadhyay & Panigrahi, 2015). Meanwhile, the commuting 

graph of a group is a simple graph with two vertices adjacent if they commute (Abdussakir et al., 2017). 

These two graphs inspired Aalipour et al. (2017) to combine those conditions by introducing the 

enhanced power graph. A cyclic graph is an alternative name for the enhanced power graph because 

it connects elements that generate the same cyclic subgroup (Ma et al., 2024). Another development 

of this graph is the deleted enhanced power graph, which excludes the identity element from the vertices 

(Costanzo et al., 2020; Costanzo & Lewis, 2021). The deep enhanced power graph is then introduced 

to further the exploration of the enhanced power graph by excluding nontrivial central elements from 

the vertex set (Mohamed et al., 2024). 

 

Once the graphs of groups are introduced, it is natural to study their graph invariants. Laplacian 

spectrum of the graph is an example of the graph invariants that can be expressed as a set of 

sequences and polynomials. This spectrum refers to the multiplicities of the Laplacian matrix's 

eigenvalues derived from electrical circuit theory. For any graph Γ, the Laplacian matrix of Γ is formed 

by subtracting the adjacency matrix from the diagonal matrix of vertex degrees (Das, 2004). Their 

eigenvalues can reveal essential characteristics, notably graph connectivity and robustness.  Numerous  
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studies have discovered the Laplacian spectrum for different types of graphs of groups. For instance, 

Chattopadhyay and Panigrahi (2015) focused on the power graphs of cyclic and dihedral groups, 

followed by Panda (2019) on dicyclic groups and finite p-groups. For commuting graphs, Abdussakir et 

al. (2017), Dutta and Nath (2018), Torktaz and Ashrafi (2019), and Kumar et al. (2021) contributed to 

the development of this spectrum. Parveen et al. (2023) are the ones that focused on the Laplacian 

spectrum of the enhanced power graph of dihedral, semi-dihedral, and generalized quaternion groups. 

Despite the extensive studies conducted on the Laplacian spectrum, there are still opportunities to 

explore this scope. 

 

This paper aims to find the Laplacian spectrum of the deep enhanced power graph of the generalized 

quaternion group. We construct the defined graph by considering all elements except the nontrivial 

central element, obtaining the neighbourhood of each vertex, and establishing its general presentation. 

This general presentation simplifies the method of obtaining the results of vertex degrees and the 

derivation of the Laplacian matrix. After analyzing the Laplacian matrix, the general formula for the 

Laplacian characteristic polynomial, which includes the eigenvalues and their multiplicities, is given, 

and it will contribute to the general Laplacian spectrum formula. 

 

Preliminaries 

This section presents some related information to establish the general presentation of the deep 

enhanced power graph of the generalized quaternion group and find its Laplacian spectrum. In this 

paper, a vertex set of Γ is denoted by 𝑉(Γ) and an edge set is denoted by 𝐸(Γ). 

 

Definition 1 (Rotman, 2010) The generalized quaternion group of order 4𝑛, 𝑄4𝑛, is a group generated 

by two elements 𝑎 and 𝑏 such that  

𝑄4𝑛  = 〈𝑎, 𝑏: 𝑎2𝑛 = 𝑏4 = 𝑒, 𝑏𝑎𝑏−1 = 𝑎−1, 𝑎𝑛 = 𝑏2〉, 

for all 𝑛 ≥ 2. 

 

Remark 1 The generalized quaternion group of order 4𝑛, can also be presented as 〈𝑎〉 ∪ (∑ 𝑎𝑗𝑏2𝑛−1
𝑗=0 )  

where 〈𝑎〉 = {𝑒, 𝑎, 𝑎2, ⋯ , 𝑎2𝑛−1} and where 𝑗 ∈ ℕ. 

 

Proposition 1 (Conrad, 2014) The center of 𝑄4𝑛 , 𝑍(𝑄4𝑛), is {𝑒, 𝑎𝑛} for all 𝑛 ≥ 2.  

 

Remark 2 The identity element, 𝑒, refers to the trivial central element whereas 𝑎𝑛 is considered as the 

nontrivial central element of 𝑄4𝑛 . 

 

Definition 2 (West, 2001) A graph Γ is known as a complete graph of 𝑛 vertices, 𝐾𝑛 , provided that every 

vertex  𝑣 ∈ 𝑉(Γ) is connected to other vertices in 𝑉(Γ). 

 

Definition 3 (West, 2001) The neighbourhood of a vertex 𝑣, 𝑁(𝑣), is the set of all vertices adjacent to 𝑣 

in Γ. 

 

Definition 4 (Bello, 2021) Let  Γ1 = (V(Γ1), 𝐸(Γ1))  and Γ2 = (V(Γ2), 𝐸(Γ2)) be two subgraphs of Γ. The 

disjoint union of the graphs, Γ1 ∪ Γ2 is a graph with the vertex set V(Γ1) ∪ V(Γ2) and edge set             

E(Γ1) ∪ E(Γ2) where V(Γ1) and V(Γ2) are disjoint sets of vertices. The join of the graphs, Γ1 +

Γ2 is obtained from Γ1 ∪ Γ2 by adding edges joining all vertices of Γ1 to Γ2. 

 

Definition 5 (West, 2001) For any vertex 𝑣 ∈ 𝑉(Γ), the degree of a vertex 𝑣 in Γ, 𝑑𝑒𝑔(𝑣), is the number 

of edges that are incident on 𝑣. 

 

Definition 6 (Mohamed et al., 2024) Let 𝐺 be a finite group and 𝑉 be all elements in 𝐺 except the 

nontrivial central element of 𝐺. Deep enhanced power graph denoted as Γ𝐷𝑒(𝐺, 𝑉), is a simple 
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undirected graph that has the elements of 𝑉 as its vertices and two distinct vertices 𝑥 and 𝑦 are adjacent 

if and only if 〈𝑥, 𝑦〉 is a proper cyclic subgroup of 𝐺. 

 

Definition 7 (Jahanbani et al., 2021) The Laplacian matrix of a graph is 𝐿(Γ) = 𝐷(Γ) − 𝐴(Γ)  where 𝐷(Γ) 

is a diagonal matrix containing vertex degrees and 𝐴(Γ) is the adjacency matrix. The degree matrix is 

a diagonal matrix with the degree of each vertex on the diagonal. In 𝐴(Γ) = (𝑎𝑖𝑗)𝑖,𝑗=1

𝑛
, 𝑎𝑖𝑗 = 1 if the 

vertices 𝑣𝑖 and 𝑣𝑗 are adjacent, otherwise 𝑎𝑖𝑗 = 0. 

 

Definition 8 (Chattopadhyay & Panigrahi, 2015) The Laplacian characteristic polynomial of a graph Γ, 

𝑝𝐿(𝜆), is 𝑝𝐿(𝜆) = det(𝜆𝐼 − 𝐿(Γ)) where 𝜆 is a real number, 𝐼 is the identity matrix, and 𝐿(Γ) is the 

Laplacian matrix. 

 

Definition 9 (Yin, 2008) The Laplacian spectrum of a graph Γ, 𝐿𝑠(Γ), refers to the Laplacian 

eigenvalues, 𝜆1, 𝜆2, ⋯ , 𝜆𝑘  with their multiplicities, 𝑚1, 𝑚2, ⋯ ,𝑚𝑘, respectively and can be presented as 

𝐿𝑠(Γ) = (
𝜆1 𝜆2 ⋯ 𝜆𝑘

𝑚1 𝑚2 ⋯ 𝑚𝑘
). These eigenvalues are derived from the roots of the characteristic 

polynomial, 𝑝𝐿(𝜆) = det(𝜆𝐼 − 𝐿(Γ)) = 0. 

 

Results and discussion 

This section provides a general presentation of the deep enhanced power graph of 𝑄4𝑛  , Γ𝐷𝑒(𝑄4𝑛 , 𝑉) and 

its Laplacian spectrum. Firstly, information about the neighbourhood of each vertex is given to help 

establish the general presentation. Note that the neighbourhood of a vertex 𝑣, 𝑁(𝑣), is the set of all 

vertices adjacent to 𝑣 in Γ𝐷𝑒(𝑄4𝑛 , 𝑉). Here, the deep enhanced power graph of 𝑄12 , Γ𝐷𝑒(𝑄12, 𝑉), used 

as an example to help understand the overall concept. 

 

Proposition 1 Let 𝑄4𝑛  be a generalized quaternion group of order 4𝑛 where 𝑛 ≥ 2. In Γ𝐷𝑒(𝑄4𝑛 , 𝑉), 

i.    𝑁(𝑒) = 𝑉\{ 𝑒}. 

ii.   𝑁(𝑎𝑖) = 〈𝑎〉\{𝑎𝑖} where 1 ≤ 𝑖 < 2𝑛 and 𝑖 ≠ 𝑛. 

iii.   𝑁(𝑎𝑗𝑏) = 〈𝑎𝑗𝑏〉\{ 𝑎𝑗𝑏} = {𝑒, 𝑎𝑗+𝑛𝑏 } where 0 ≤ 𝑗 < 2𝑛. 

 

Proof. Let 𝑄4𝑛 be a generalized quaternion group of order 4𝑛 where 𝑛 ≥ 2 and 𝑉 be all elements in 𝐺 

except the nontrivial central element of 𝐺, 𝑎𝑛. 

 

i. Since identity element, 𝑒 is always adjacent to all other vertices in Γ𝐷𝑒(𝑄4𝑛 , 𝑉) because 〈𝑒, 𝑦〉 =

〈𝑦〉 where 𝑦 ∈ 𝑉\{𝑒}, therefore, 𝑁(𝑒) = 𝑄4𝑛\{𝑒, 𝑎𝑛}.  

ii. Let 𝑖 ≠ 𝑛 and 1 ≤ 𝑖 < 2𝑛. Then, 𝑁(𝑎𝑖) = 〈𝑎〉\{𝑎𝑛} since 〈𝑎〉 ⊆ 𝑁(𝑎𝑖). It is impossible for 𝑎𝑖 to be 

adjacent to some 𝑦 ∈ 𝑄4𝑛\〈𝑎〉 by the fact that 𝑎𝑖 and 𝑦 does not belong to the proper cyclic 

subgroup. 

iii. Consider 𝑎𝑗𝑏 where 0 ≤ 𝑗 < 2𝑛. By group relations, we have 𝑎2𝑛 = 𝑏4 = 𝑒, 𝑏𝑎𝑏−1 = 𝑎−1, 𝑎𝑛 = 𝑏2. 

Since the cyclic subgroup generated by 𝑎𝑗𝑏, 〈𝑎𝑗𝑏〉 =  {𝑒, 𝑎𝑛 , 𝑎𝑗𝑏, 𝑎𝑗+𝑛𝑏}, then, 𝑁(𝑎𝑗𝑏) =

{𝑒, 𝑎𝑗+𝑛𝑏 } for all 𝑎𝑗𝑏 ∈ 𝑉. ∎ 

 

Example 1 Let 𝑄12 = {𝑒, 𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏} and the center of 𝑄12, 𝑍(𝑄12) = {𝑒, 𝑎3}. 

The vertices of Γ𝐷𝑒(𝑄12, 𝑉), 𝑉 = {𝑒, 𝑎, 𝑎2, 𝑎4, 𝑎5, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏, 𝑎4𝑏, 𝑎5𝑏}, since 𝑎3 is the nontrivial central 

element of 𝑄12 and represent it as three partition sets that are {𝑒}, {𝑎, 𝑎2, 𝑎4, 𝑎5} and ∑ 𝑎𝑗𝑏5
𝑗=0 . Using 

Proposition 1, the adjacency relations in Γ𝐷𝑒(𝑄12, 𝑉) can be determined, and they can be drawn as 

shown in Figure 1. The presentation of the graph is Γ𝐷𝑒(𝑄12, 𝑉) = 𝐾1 + (𝐾4 ∪ 3𝐾2). 
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Figure 1 The deep enhanced power graph of 𝑄12 

 

Theorem 1 Let 𝑄4𝑛 be a generalized quaternion group of order 4𝑛, where 𝑛 ≥ 2. Then,  

Γ𝐷𝑒(𝑄4𝑛 , 𝑉) = 𝐾1 + (𝐾2(𝑛−1) ∪ 𝑛𝐾2). 

 

Proof. Consider the generalized quaternion group of order 4𝑛, 𝑄4𝑛 where 𝑛 ≥ 2 and the vertex set of 

Γ𝐷𝑒(𝑄4𝑛 , 𝑉), 𝑉 = 𝑄4𝑛\{𝑎𝑛}. There are three partitions set of 𝑉: {𝑒}, 〈𝑎〉\{𝑎𝑛} and ∑ 𝑎𝑗𝑏2𝑛−1
𝑗=0 . From the 

neighbourhood information in Proposition 1, we can represent each of these partition sets. The set {𝑒} 

forms a subgraph 𝐾1. Each 𝑎𝑖 ∈ 〈𝑎〉\{𝑎𝑛} for 1 ≤ 𝑖 < 2𝑛 and 𝑖 ≠ 𝑛  is adjacent to all elements in the 

cyclic subgroup generated by 𝑎 forming a complete subgraph 𝐾2(𝑛−1). In ∑ 𝑎𝑗𝑏2𝑛−1
𝑗=0 , each 𝑎𝑗𝑏  and 𝑎𝑗+𝑛𝑏 

form a clique of size 2, resulting in 𝑛 such cliques 𝐾2. By Definition 4, we have Γ𝐷𝑒(𝑄4𝑛 , 𝑉) = 𝐾1 +

(𝐾2(𝑛−1) ∪ 𝑛𝐾2) as the general presentation since 𝑒 is adjacent to all other elements in 𝑉, but the partition 

set 〈𝑎〉\{𝑒} is not connected to the partitions set ∑ 𝑎𝑗𝑏2𝑛−1
𝑗=0 .     ∎ 

 

Next proposition describes the degrees of vertices corresponding to the elements of generalized 

quaternion group, which is also important in investigating the graph's spectral information. 

 

Proposition 2 Let 𝑄4𝑛 be a generalized quaternion group of order 4𝑛, where 𝑛 ≥ 2. In Γ𝐷𝑒(𝑄4𝑛 , 𝑉), 

i. deg(𝑒) = 4𝑛 − 2, 

ii. deg(𝑎𝑖) = 2𝑛 − 2 where 1 ≤ 𝑖 < 2𝑛, 

iii. deg(𝑎𝑗𝑏) = 2 where 0 ≤ 𝑗 < 2𝑛. 

 

Proof. Let 𝑄4𝑛 be a generalized quaternion group of order 4𝑛, where 𝑛 ≥ 2 and the vertex set of 

Γ𝐷𝑒(𝑄4𝑛 , 𝑉), 𝑉 = 𝑄4𝑛\{𝑎𝑛}.  The order of elements in 𝑉 = 4𝑛 − 1. From Proposition 1 and Theorem 1, it 

is clear that 

 

i. the identity element, 𝑒 is adjacent to every vertex 𝑉, hence, deg(𝑒) = 4𝑛 − 2, 

ii. for all 𝑎𝑖 ∈ 𝑉 where 1 ≤ 𝑖 < 2𝑛, deg(𝑎𝑖) = 2𝑛 − 2 as reflect the interconnected with 𝑒 and within 

the partition set 〈𝑎〉\{𝑎𝑛} of size 2𝑛 − 2, 

iii. for each 𝑎𝑗𝑏 ∈ 𝑉 where 0 ≤ 𝑗 < 2𝑛, deg(𝑎𝑗𝑏) = 2 in which 𝑎𝑗𝑏 are connected to  𝑒 and 𝑎𝑗+𝑛𝑏. 

               ∎ 

 

Now, the Laplacian characteristic polynomial, 𝑝𝐿(Γ𝐷𝑒) and its spectrum of the deep enhanced power 

graph, 𝐿𝑠𝑝𝑒𝑐(Γ𝐷𝑒) is provided. Note that Γ𝐷𝑒 is an abbreviated form for Γ𝐷𝑒(𝑄4𝑛 , 𝑉). 

 

Theorem 2 For all 𝑛 ≥ 2, the Laplacian characteristic polynomial of the deep enhanced power graph 

of 𝑄4𝑛 is given by 

𝑝𝐿(Γ𝐷𝑒)(𝜆) = 𝜆(𝜆 − 1)𝑛(𝜆 − 3)𝑛(𝜆 − (2𝑛 − 1))2𝑛−3(𝜆 − (4𝑛 − 1)) 

and its Laplacian spectrum is 
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𝐿𝑠𝑝𝑒𝑐(Γ𝐷𝑒) = (
0 1 3 2𝑛 − 1 4𝑛 − 1
1 𝑛 𝑛 2𝑛 − 3 1

). 

 

Proof. Using Theorem 1 and Proposition 2, the Laplacian matrix, 𝐿(Γ𝐷𝑒) of size (4𝑛 − 1) × (4𝑛 − 1) is 

constructed. The rows and columns of 𝐿(Γ𝐷𝑒) are indexed in order following the partition sets: {𝑒}, 

〈𝑎〉\{𝑎𝑛} and ∑ 𝑎𝑗𝑏2𝑛−1
𝑗=0  as follows 

 

𝐿(Γ𝐷𝑒)  = (
𝑃(2𝑛−1)×(2𝑛−1) 𝑄(2𝑛−1)×2𝑛

𝑆2𝑛×(2𝑛−1) 𝑇2𝑛×2𝑛
), 

where, 

 

𝑃(2𝑛−1)×(2𝑛−1) =

(

  
 

4𝑛 − 2 −1 −1 ⋯ −1 −1
−1 2𝑛 − 2 −1 ⋯ −1 −1
−1 −1 2𝑛 − 2 ⋯ −1 −1
⋮ ⋮ −1 ⋱ ⋱ ⋮

−1 −1 ⋱ ⋱ ⋱ ⋮
−1 −1 ⋯ ⋯ −1 2𝑛 − 2)

  
 

,𝑄(2𝑛−1)×2𝑛 = (

−1 −1 ⋯ −1
0 0 ⋱ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

), 

 

𝑆2𝑛×(2𝑛−1) = (

−1 0 ⋯ 0
−1 0 ⋱ 0
⋮ ⋮ ⋱ ⋮

−1 0 ⋯ 0

) , 𝑇2𝑛×2𝑛 =   (

𝐴 0 ⋯ 0
−0 𝐴 ⋱ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴

) 

 

with 𝐴 = (
2 −1

−1 2
). Using Definition 8, the Laplacian characteristic polynomial, 𝑝

𝐿(Γ𝑐𝑜𝑝(𝑆𝐷2𝑛)) 
(𝜆) can be 

written as 𝑝𝐿(Γ𝐷𝑒)(𝜆) = det(𝜆𝐼4𝑛−1 − 𝐿(Γ𝐷𝑒)). Thus, 

                                          

𝑝𝐿(Γ𝐷𝑒)(𝜆) = |
𝜆𝐼(2𝑛−1) − 𝑃(2𝑛−1)×(2𝑛−1) 𝑄(2𝑛−1)×2𝑛

𝑆2𝑛×(2𝑛−1) 𝜆𝐼2𝑛 − 𝑇2𝑛×2𝑛
| . 

 

The desired Laplacian characteristic polynomial, 𝑝𝐿(Γ𝐷𝑒)(𝜆) is derived by applying elementary row 

operations to simplify the matrix towards its upper triangular form. These operations such as  𝑅𝑘 ← 𝑅𝑘 −
1

𝜆−(4𝑛−2)
𝑅1 for 𝑘 = 2, 3,⋯ , 4𝑛 − 1 are systematically repeated for each subsequent row until the entire 

matrix is processed. Once the matrix is in upper triangular form, 𝑝𝐿(Γ𝐷𝑒)(𝜆) can be calculated as the 

product of the diagonal elements. Using Definition 9, their Laplacian spectrum, 𝐿𝑠𝑝𝑒𝑐(Γ𝐷𝑒) holds, as 

stated.                 ∎ 

 

To have a clear view of Theorem 2, consider the Laplacian spectrum of the deep enhanced power 

graph of 𝑄12 as an example. 

 

Example 2 The deep enhanced power graph of 𝑄12 is represented as  𝐾1 + (𝐾4 ∪ 3𝐾2) and its Laplacian 

matrix, 𝐿(Γ𝐷𝑒) is of size 11 × 11 is indexed according to the partition sets as described in Example 1. 

Now, we have  
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𝐿(Γ𝐷𝑒) =

[
 
 
 
 
 
 
 
 
 
 
10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 4 −1 −1 −1 0 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0 0
−1 −1 −1 −1 4 0 0 0 0 0 0
−1 0 0 0 0 2 −1 0 0 0 0
−1 0 0 0 0 −1 2 0 0 0 0
−1 0 0 0 0 0 0 2 −1 0 0
−1 0 0 0 0 0 0 −1 2 0 0
−1 0 0 0 0 0 0 0 0 2 −1
−1 0 0 0 0 0 0 0 0 −1 2 ]

 
 
 
 
 
 
 
 
 
 

. 

 

Then, we find the Laplacian characteristic polynomial, 

 

    𝑝𝐿(Γ𝐷𝑒)(𝜆) = det(𝜆𝐼4𝑛−1 − 𝐿(Γ𝐷𝑒)) 

              =

|

|

|

𝜆 − 10 1 1 1 1 1 1 1 1 1 1
1 𝜆 − 4 1 1 1 0 0 0 0 0 0
1 1 𝜆 − 4 1 1 0 0 0 0 0 0
1 1 1 𝜆 − 4 1 0 0 0 0 0 0
1 1 1 1 𝜆 − 4 0 0 0 0 0 0
1 0 0 0 0 𝜆 − 2 1 0 0 0 0
1 0 0 0 0 1 𝜆 − 2 0 0 0 0
1 0 0 0 0 0 0 𝜆 − 2 1 0 0
1 0 0 0 0 0 0 1 𝜆 − 2 0 0
1 0 0 0 0 0 0 0 0 𝜆 − 2 1
1 0 0 0 0 0 0 0 0 1 𝜆 − 2

|

|

|

. 

 

First, eliminate the first column entries below the first row using 𝑅𝑘 ← 𝑅𝑘 −
1

𝜆−10
𝑅1 for 𝑘 = 2,3,⋯ ,11. 

Repeat similar operations for each subsequent column to eliminate entries below the diagonal until the 

matrix is completely transformed into upper triangular form. Therefore, we get 

 

𝑝𝐿(Γ𝐷𝑒)(𝜆) = 𝜆(𝜆 − 1)3(𝜆 − 3)3(𝜆 − 5)3(𝜆 − 11). 

 

Using Definition 9, the Laplacian spectrum, 𝐿𝑠𝑝𝑒𝑐(Γ𝐷𝑒) = (
0 1 3 5 11
1 3 3 3 1

) that indicates the 

eigenvalues of the Laplacian matrix and their multiplicities. 

 

Conclusion 

This paper establishes the general presentation of Γ𝐷𝑒(𝑄4𝑛 , 𝑉) and finds its Laplacian spectrum. 

Through a detailed construction and analysis of the graph Γ𝐷𝑒(𝑄4𝑛, 𝑉), we also provide the 

neighbourhood and the degree of each vertex. Our study found that the Laplacian spectrum, 𝐿𝑠𝑝𝑒𝑐(Γ𝐷𝑒), 

indicates five distinct eigenvalues with their respective multiplicities. This spectrum provides significant 

insights into the structural properties and connectivity of the graph. Our findings contribute to a deeper 

understanding of the spectral characteristics of graphs of finite groups and provides opportunities for 

further investigations in both theoretical and applied graph theory. 
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