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Abstract 

Internal gravity waves play a vital role in shaping the dynamics of both Earth’s atmosphere and ocean, 

which can influence the circulation patterns and mixing processes. A significant research gap persists 

in understanding how these waves propagate in the presence of topographic features. The purpose 

of this study is to investigate the behaviour of internal gravity waves as they interact with hills. The 

mathematical model considers motion in both 𝑥 and 𝑧 directions, accounting for a uniform background 

horizontal wind speed. Three distinct cases are investigated, which are case 1 : 𝑁2 = 𝑘2𝑈2; case 2 : 

𝑁2 < 𝑘2𝑈2; and case 3 : 𝑁2 > 𝑘2𝑈2. The methods of direct integration and characteristic function are 

employed to solve the differential equations. The physical quantities of waves, including velocity, 

pressure, and density are visualized using MATLAB software by using different values of horizontal 

wavenumber. The results showed that a shorter wavenumber corresponds to a higher wavelength and 

lower frequency. In case 3, the waves have zero frequency but have group velocity. It is observed that 

the waves maintain a consistent energy transfer during propagation. In conclusion, variations in 

horizontal wavenumber have significant impact on the behaviour of internal gravity waves when they 

propagate above topography. 

Keywords: internal gravity waves; topographic features; mathematical model; partial differential 

equations; horizontal wavenumber 

 

1. Introduction 

Internal gravity waves are waves that oscillate within a fluid medium, which caused by variations in 

density. German glider pilots have discovered the existence of mountain waves, which are one of the 

types of internal gravity waves [1]. The presence of mountain waves have the relation with the high-

altitude clouds [2]. Before the investigation of internal gravity waves, there is a need to derive the 

mathematical model. Lteif and Khorbatly [3] have presented the derivation and mathematical analysis 

of the model of internal gravity waves. The internal gravity waves are mainly investigated on its 

characteristics. Durran mentioned that the characteristics of internal gravity waves are related with 

linear theory [4]. The behaviour of internal gravity waves depend on the observation of the time scale 

[5]. The waves’ behaviour are simulated using Fast Fourier transform and the results showed that not 

all waves have the same propagation speed [6]. Previous study also revealed that an increase in wind 

results in a decrease in vertical wavelength [7]. 

The investigation on the wave propagation used Boussinesq approximation as it is a key tool 

for the analysis of internal gravity waves. Many researchers have employed the Boussinesq 

approximation in their research, especially investigating on lee wave phenomena [8]. The equations 

of internal gravity waves have been solved by involving Boussinesq approximation [9,10]. By using 

Boussinesq approximation, the nonlinear Boussinesq-type model can be derived [11] and the 

characteristics of nonlinear internal gravity waves can be analysed [12]. Besides, Charlier and Lenells 

[13] also established Boussinesq approximation in determining the solutions with the implementation 

of Inverse Scattering Transform (IST) for the initial value problem. 

Furthermore, the analysis of the solutions related to energy of internal gravity waves is crucial 

in the field of wave dynamics. Eden et al. [14] investigated the mechanism of energy transfer of internal 

gravity waves using numerical simulation. They have evaluated the kinetic energy using three different 
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methods, while the potential energy has been analysed by other researchers [15]. According to [16,17], 
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the researchers also examined the energy produced by internal gravity waves. The rotary spectral the 

researchers also examined the energy produced by internal gravity waves. The rotary spectral analysis 

is used in investigation of energy distribution [18]. Khatiwala [19] also investigated on the generation of 

energy under the influence of bottom topography. The findings showed that a sizable topographic 

features significantly reduced the rate of energy transfer. Not only that, the researchers also have 

discussed on the energy density above the wave peak [20]. The energy density of internal gravity waves 

is larger when the buoyancy frequency is higher [21].  

When investigating the internal gravity waves, several numerical methods have been used by 

the researchers, such as Finite Difference Method (FDM), Finite Element Method (FEM), and Finite 

Volume Method (FVM). FDM is the most common method used in simulations of internal gravity waves. 

The researchers have used second order finite difference scheme in discretization the partial differential 

equation of internal gravity waves [22]. Two-dimensional equations have been solved using FDM [23-

25]. Shi et al. [26] solved the nonlinear Boussinesq model for surface gravity waves using FDM, while 

Johnston and Merrifield [27] used FDM to solve Princeton Ocean Model (POM). Besides, Rizal et al. 

[28] analysed the response of internal gravity waves in finite channel using FDM and the results showed 

that variations in amplitudes and periods contributes to variations in the signal of internal gravity waves 

time-series. On the other hand, three-dimensional flow problems have been solved using FEM by the 

researchers [29,30]. A scaled boundary finite element method (SBFEM) has been employed in [31]. 

Previous studies also revealed that the use of FEM can approximate the data generating process [32] 

and determine the accuracy and convergence of the model [33]. Moreover, the simulation of internal 

gravity waves are done through the employment of FVM with the combination of other method, model 

or algorithm [34-37]. For example, the researchers have presented FVM on solving nonhydrostatic 

Navier-Stokes equations with the Bossinesq model [38]. 

Moreover, several laboratory experiments have conducted by researchers in order to detect 

the changes of the behaviour of internal gravity waves. Matsuura and Hibiya [39] have did the 

experiments on the generation of internal waves due to the interaction of tides and topography. They 

observed the vertical density stratification with constant temperature gradient. The experiments by Lim 

et al. [40] also investigated on the generation of waves and they reported the waves occurred within the 

finite length of slope about the critical point. The laboratory experiments on the behaviour of wave 

propagation also investigated and analysed in [41,42]. The researchers in [43,44] have did the 

laboratory experiments to observe the internal wave attractors, while the researchers in [45] did the 

laboratory experiments to observe the stream function field. Additionally, many researchers have 

conducted numerical simulations of internal gravity waves. Klemp and Lilly [46] developed two-

dimensional numerical model to simulate internal gravity waves with finite amplitude, while Xu et al. [47] 

investigated on the waves generated in directional wind over idealized terrain. The numerical 

experiments also conducted to analyse the propagation of internal gravity waves [48-50]. The 

researchers reported the numerical simulations of internal wave reflection in the bottom boundary layer 

over sloping topography [51]. Other numerical simulations of waves can be found in [52-56]. 

The main purpose of this study is to provide valuable insights and findings regarding the 

behaviour of internal gravity waves when they propagate above the topography. In this study, three 

distinct cases are investigated in which the horizontal wavenumber used are vary. The aim of this study 

is to compare the values of physical quantities as horizontal wavenumber vary. This paper is structured 

as follows. The methodology consists of mathematical formulation of internal gravity waves are outlined 

in Section 2. Section 3 presents analytical solutions to the second order ordinary differential equation 

for three distinct cases. The results of the behaviour of internal gravity waves above topography are 

discussed in Section 4. The last section contains conclusion and recommendations for future research 

work. 

 

2. Methodology 

In order to analyse the behaviour of internal gravity waves under the influence of topography, the first 

thing is to derive the equation governing internal gravity waves within the Boussinesq approximation 
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incorporating the effects of a uniform horizontal wind speed. Subsequently, the mathematical model is 

modified to include the presence of topographic features during the propagation of internal gravity 

waves. 

 

2.1 Mathematical Formulation in Horizontal Flow 

Consider the fluid flow is incompressible and the flow density remains constant at time, 𝑡. The fluid flow  

problem follows the fundamental physical principle of mass is conserves and momentum is conserves, 

which yields the equations below. 

 
𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ ∇)𝐮 = −

1

�̅�
∇𝑝 −

𝜌𝑔

�̅�
𝐞z + 𝐃       (1) 

    ∇ ∙ 𝐮 = 0                         (2) 

            
𝜕𝜌

𝜕𝑡
+ 𝐮 ∙ ∇𝜌 = 0                                   (3) 

where 𝐮 is velocity of fluid, ∇ is gradient, 𝜌 is density of fluid, 𝑝 is pressure, and 𝐅 is forces on the fluid. 

Internal gravity waves can be find in ocean where the density is vary depends on the height. 

By assuming that the variations in the density is no more than ±2% from the average density, �̅�, then 

the density is written as 

               𝜌(𝑥, 𝑡) = �̅� + (𝜌(𝑥, 𝑡) − �̅�)                                (4) 

where |𝜌(𝑥, 𝑡) − �̅�| ≪ �̅� by assumption.   

The forces on the fluid can be written as 𝐅 = −𝑔𝐞z + 𝐃 where 𝑔 is gravity and 𝐃 is the external forces. 

The substitution of (4) and the equation of forces into (1) will give equation  

     {�̅� + (𝜌 − �̅�)}
𝐷𝐮

𝐷𝑡
= −∇𝑝 − {�̅� + (𝜌 − �̅�)}𝑔𝐞z + {�̅� + (𝜌 − �̅�)}𝐃              (5) 

Since |𝜌(𝑥, 𝑡) − �̅�| ≪ �̅�, it is tempting to approximate the first term and last terms of the curly brackets 

by �̅�. The second term of the curly bracket is not approximate by �̅� because the variations in density in 

combination with gravity lead to the buoyancy effect. The equation will reduces to 

                        
𝐷𝐮

𝐷𝑡
= −

1

�̅�
∇𝑝 −

𝜌𝑔

�̅�
𝐞z + 𝐃                 (6) 

Suppose that D = 0 and consider the presence of a uniform horizontal wind speed 𝐮 = 𝑈𝐞𝑥, 

where 𝑈 is the background horizontal wind speed and 𝐞𝑥 is unit vector in 𝑥-direction. By looking for two-

dimensional disturbances of 𝑢′, 𝑤′, 𝑝′ and 𝜌′ to the flow of internal gravity waves, in which 𝑢 = 𝑈 +

𝑢′(𝑥, 𝑧, 𝑡) ,  𝑤 = 0 + 𝑤′(𝑥, 𝑧, 𝑡), 𝑝 = 𝑝0(𝑧) + 𝑝′(𝑥, 𝑧, 𝑡) , and 𝜌 = 𝜌0(𝑧) + 𝜌′(𝑥, 𝑧, 𝑡) , the linearized 

equations of internal gravity waves in horizontal flow are obtained as follows. 

           (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
) 𝑢′ = −

1

�̅�

𝜕𝑝′

𝜕𝑥
                               (7) 

                                      (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
) 𝑤′ = −

1

�̅�

𝜕𝑝′

𝜕𝑧
−

𝑔𝜌′

�̅�
                                       (8) 

      
𝜕𝑢′

𝜕𝑥
+

𝜕𝑤′

𝜕𝑧
= 0                                (9) 

      (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
) 𝜌′ + 𝑤′

d𝜌0

d𝑧
= 0                             (10) 

By eliminating the variables 𝑝′ , 𝑢′ , and 𝜌′  in equations (7-10), an equation which describes two-

dimensional internal gravity waves in horizontal flow can be written as 

     (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2) (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
)

2

𝑤′ + 𝑁2(𝑧)
𝜕2𝑤′

𝜕𝑥2 = 0                (11) 

where 𝑁(𝑧) is known as buoyancy frequency and 

𝑁2(𝑧) = −
𝑔

�̅�

d𝜌0

d𝑧
                    (12) 

The solution to the equation (11) is assume to be 

𝑤′(𝑥, 𝑧, 𝑡) = Re [�̂�e𝑖(𝑘𝑥+𝑚𝑧−𝜔𝑡)]                                     (13) 

Apply differentiation on (13) and follow by the substitution into (11) will yield the solution of 

        Re[((𝑘2 + 𝑚2)(𝜔 − 𝑘𝑈)2 − 𝑁2𝑘2)(�̂�e𝑖(𝑘𝑥+𝑚𝑧−𝜔𝑡))] = 0            (14) 

The variable �̂� is suppose to be not equal to zero so that the solution is non-trivial. The manipulation of 

equation (14) can obtain the equation of dispersion relation, phase speed, and group velocity of internal 

gravity waves, which are 
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𝜔 =  𝑘𝑈 ±
𝑁𝑘

√𝑘2+𝑚2
                         (15) 

        𝑐𝑝 =
𝜔

𝑘
= 𝑈 ±

𝑁

√𝑘2+𝑚2
                          (16) 

    𝐜𝑔 = (
𝜕𝜔

𝜕𝑘
, 0,

𝜕𝜔

𝜕𝑚
) = (𝑈 ±

𝑁𝑚2

(𝑘2+𝑚2)
3
2

, 0,
∓𝑁𝑘𝑚

(𝑘2+𝑚2)
3
2

)                (17) 

 

2.2 Mathematical Formulation under Topographic Features  

The presence of topographic features such as hills will change the equation of internal gravity waves in 

horizontal flow. Suppose that the Earth’s surface is deformed into an array of hills at 𝑧 = ℎ′(𝑥). The 

internal gravity waves will propagate upwards into the atmosphere and reach a steady state after a long 

time, which implies that 𝜕/𝜕𝑡 = 0 as there is no time dependence. The equation in (11) will become 

               𝑈2 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2)
𝜕2𝑤′

𝜕𝑥2 + 𝑁2(𝑧)
𝜕2𝑤′

𝜕𝑥2 = 0                (18) 

There is a boundary condition of no normal flow to be satisfied at the ground 𝑧 = ℎ′(𝑥). By writing 𝑧 −

ℎ′(𝑥) = 0 and normal vector 𝐧 = ∇(𝑧 − ℎ′(𝑥)) = (−dℎ′/d𝑥, 0,1), the boundary condition of 𝑤′  in (18) 

can be obtained using 

     𝐮 ∙ 𝐧 = 0                  (19) 

By using linearization follow by Taylor series expansion at 𝑧 = ℎ′(𝑥), the corresponding boundary 

condition of 𝑤′ is 

                               𝑤′(𝑧 = 0) =  𝑈
𝑑ℎ′

𝑑𝑥
                             (20) 

Now, consider the buoyancy frequency, 𝑁 is constant, and ℎ′ = Re(ℎ̂e𝑖𝑘𝑥), where ℎ̂ is a complex 

number and |ℎ̂| is the height of the hills, the solutions of 𝑤′, which is the vertical velocity of waves is 

assume to be 

           𝑤′ = Re(�̂�(𝑧)e𝑖𝑘𝑥)                             (21) 

By differentiating 𝑤′ in (21) with respect to 𝑥 twice, follow by the substitution into (18) will obtain a second 

order ordinary differential equation as follow. 

                            
𝑑2�̂�

𝑑𝑧2 + (
𝑁2

𝑈2 − 𝑘2) �̂� = 0     (22) 

with the boundary condition 

                                 �̂�(𝑧 = 0) = 𝑖𝑘𝑈ℎ̂                 (23) 

The equation in (22) needs to be solved using the boundary condition in (23). In this study, the investigation 

will considers three distinct cases and the solutions are discussed in the following section. 

 

3. Analytical Solutions 

The solutions to the second order ordinary differential equation are solved using direct integration for 

case 1. For case 2 and case 3, it is solved using characteristic function. 

 

Case 1 : 𝑁2 = 𝑘2𝑈2 

The coefficient of �̂� is zero, so the most easiest way to solve the equation in (22) is by using direct 

integration. The corresponding solution is  

                 �̂� =  𝑖𝑘𝑈ℎ̂               (24) 

 

Case 2 : 𝑁2 < 𝑘2𝑈2 

For simplicity of the equation, a variable 𝜅 = √𝑘2 − (𝑁2/𝑈2) ∈ ℝ+ is introduced in equation (22) and it 

is written as  

                                                  
𝑑2�̂�

𝑑𝑧2 − 𝜅2�̂� = 0                                 (25)  

By using the boundary condition in (23) and demanding that the solution remains finite as 𝑧 → ∞, the 

solution can be obtained as 

           �̂� =  𝑖𝑘𝑈ℎ̂e−𝜅𝑧                                 (26) 
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Case 3 : 𝑁2 > 𝑘2𝑈2 

Similar as case 2, a variable 𝑚 = √(𝑁2/𝑈2) − 𝑘2 ∈ ℝ+ is introduced in equation (22) and it is written as 

      
𝑑2�̂�

𝑑𝑧2 + 𝑚2�̂� = 0                        (27) 

By demanding the solution remains finite as 𝑧 → ∞ yields no new information since the solutions are 

sinusoidal. Therefore, by equating the coefficient of the decreasing function to zero, the constant values 

of the equation can be determined. Finally, the solution obtained is  

                                          �̂� = 𝑖𝑘𝑈ℎ̂e𝑖𝑚𝑧      (28) 

     

4. Results and discussion 

The expressions and graphical representations of the physical quantities of internal gravity waves for each 

case will be presented in this section. This section also discusses on the dispersion relation, phase speed, 

group velocity, and energy of waves in case 3. 

 

4.1 Vertical Velocity 

By using the expression of �̂� obtained in previous section, the vertical velocity of internal gravity waves 

is calculated using (21). The solutions for each case are as follow. 

 Case 1 : 𝑤′ = 𝑘𝑈Re(𝑖ℎ̂e𝑖𝑘𝑥)     (29) 

              Case 2 : 𝑤′ = 𝑘𝑈e−𝜅𝑧Re(𝑖ℎ̂e𝑖𝑘𝑥)                                  (30) 

              Case 3 : 𝑤′ = 𝑘𝑈Re(𝑖ℎ̂e𝑖(𝑘𝑥+𝑚𝑧))                 (31) 

The vertical velocity profile of internal gravity waves are plotted using fix value of ℎ̂ = 200 + 50𝑖 with 

variations in horizontal wavenumber, 𝑘 . The background horizontal wind speed, 𝑈  and buoyancy 

frequency, 𝑁 used in plotting the graphs are positive real numbers. The corresponding graphs are 

shown in Figure 1. 

 

        

 
Figure 1 Vertical Velocity Profile for Internal Gravity Waves 

 

The vertical velocity of internal gravity waves are vary sinusoidal for case 1 along the horizontal 

position. There are undulations above the hills as the vertical velocity changes when the waves pass 

over the hills. For case 2, the vertical velocity of waves decrease when the waves move deeper to the 
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hills. This situation occurred because the disturbances of waves are stronger at the surface as 

compared to the bottom of the hills. In contrast, the waves showed oscillations in the vertical velocity 

with respect to the depth for case 3. The phase of the waves are constant along the lines 𝑘𝑥 + 𝑚𝑧. It is 

observed that the waves with lower horizontal wavenumber produces the graph with lower value of 

vertical velocity at wave-crests and troughs. 

4.2 Horizontal Velocity 

When the internal gravity waves move along the horizontal position, their horizontal velocity may 

changes due to the topographic features. By using the expression of vertical velocity, 𝑤′ , the 

corresponding horizontal velocity can be obtained using equation (9). The results from the calculations 

are as follow. 

 Case 1 : 𝑢′ = 𝐴       (32) 

           Case 2 : 𝑢′ = 𝑈𝜅e−𝜅𝑧Re(ℎ̂e𝑖𝑘𝑥)     (33) 

                 Case 3 : 𝑢′ = −𝑚𝑈Re[𝑖ℎ̂e𝑖(𝑘𝑥+𝑚𝑧)]    (34) 

The results showed that for case 1, the waves have constant value in horizontal velocity, which means 

that the speed and direction of flow remains the same at all points along the horizontal axis. For both 

case 2 and case 3, the analysis are done through graphical representations as shown in Figure 2. 

 

        
Figure 2 Horizontal Velocity Profile for Internal Gravity Waves 

 

Based on Figure 2, both of the horizontal velocity of internal gravity waves vary sinusoidal with 

respect to the horizontal position. The use of higher horizontal wavenumber contributes to shorter 

wavelength, which results in higher frequency of waves. One of the differences between case 2 and case 

3 is the wave-crests and troughs travel with smaller horizontal velocity in case 3 as compared to case 2. 

 

4.3 Pressure 

The propagation of waves have influence on the pressure. The changes of the pressure of waves are 

investigated as follow. By substituting 𝑢′  into (7), the solutions for pressure for each case can be 

obtained as follow. 

  Case 1 : 𝑝′ = 𝐵      (35) 

               Case 2 : 𝑝′ = −�̅�𝑈2𝜅e−𝜅𝑧Re(ℎ̂e𝑖𝑘𝑥)     (36) 

  Case 3 : 𝑝′ = �̅�𝑚𝑈2Re[𝑖ℎ̂e𝑖(𝑘𝑥+𝑚𝑧)]    (37) 

Since horizontal velocity of internal gravity waves in case 1 is a constant value, therefore the pressure 

also remains as a constant value. It means that there is no variations in the pressure gradients of waves 

above topography. While for case 2 and case 3, there are variations in pressure gradient and the 

corresponding graphs are shown in Figure 3. The average density, �̅� = 1025 𝑘𝑔/𝑚3 is used in plotting. 
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Figure 3 Pressure of Internal Gravity Waves 

 

Based on Figure 3, the pressure of internal gravity waves in both cases show sinusoidal in 

variations. Both graphs show that higher horizontal wavenumber contributes to higher frequency of 

oscillations. From the analysis, it is observed that the pressure of internal gravity waves in case 3 are 

smaller as compared to case 2. This revealed that the pressure does not have significant effects on the 

waves propagation under case 3. 

 

4.4 Density 

As the internal gravity waves move up and down over the hills, the density will changes along the depth. 

Based on the obtained vertical velocity 𝑤′, and pressure 𝑝′, the expression of the density 𝜌′, can be 

obtained by using the equation in (8). After the calculations, the corresponding expressions for density 

are shown below. 

Case 1 : 𝜌′ =
�̅�

𝑔
𝑘2𝑈2Re(ℎ̂e𝑖𝑘𝑥)     (38) 

            Case 2 : 𝜌′ =
�̅�

𝑔
[𝑈2(𝑘2 − 𝜅2)e−𝜅𝑧Re(ℎ̂e𝑖𝑘𝑥)]     (39) 

          Case 3 : 𝜌′ =
�̅�

𝑔
[𝑈2(𝑚2 + 𝑘2)Re(ℎ̂e𝑖(𝑘𝑥+𝑚𝑧))]     (40) 

The expressions of density involved a new variable, which is acceleration due to gravity, 𝑔. The value of 

𝑔 is fixed at 9.81 𝑚𝑠−2 when plotting the graphs. The graphs are plotted using variations in horizontal 

wavenumber and are shown in Figure 4. 

 

        

 
Figure 4 Density of Internal Gravity Waves 
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Since the density does not depend on the depth for case 1, therefore graphs of the density are 

plotted against the horizontal position. The graphs show that the density varies sinusoidal when the 

waves flow across 𝑥 direction. When using higher horizontal wavenumber, the density show sharper 

waves at the crests and troughs. On the other hand, the density of waves are plotted with respect to 

the depth as it the density will varies depend on depth. For case 2, it is observed that the density 

decreases as the waves move near the surface of the hills. As the waves move deeper, the density 

tends to increase due to surrounding effects such as temperature and pressure. For case 3, the density 

are varies sinusoidal along the depth. The difference in horizontal wavenumber does not impacts on the 

period and frequency during the oscillation. It means that the waves have equal number of wave-crests 

and troughs independent of the horizontal wavenumber. 

  

 

4.5 Dispersion Relation 

The investigation of dispersion relation in (15) is important when analysing the behaviour of internal 

gravity waves when they propagate above the hills. For the purpose of investigation, the dispersion 

relation is set to be equal to zero. The manipulation of the equation will then obtained an equation for 

the variable, 𝑚, which is 

 𝑚 = ±√
𝑁2

𝑈2 − 𝑘2                           (41) 

This variable is known as vertical wavenumber. Based on observation, the solution of 𝑚 obtained in 

(41) is consistent with the steady solution in case 3. It means that for case 3, the waves have zero 

frequency, as the dispersion relation is equal to zero. For the possibility of the dispersion relation to be 

equal to zero, it is necessary to take the negative sign in (15) as the background horizontal wind speed, 

𝑈 is assume to be positive. Therefore, the dispersion relation of internal gravity waves for case 3 can 

be written as 

                 𝜔 =  𝑘𝑈 −
𝑁𝑘

√𝑘2+𝑚2
                                      (42) 

The equation in (42) shows that there exists a linear relationship between 𝜔 and 𝑘. To have better 

analysis on the dispersion relation, the corresponding graph is plotted using horizontal wavenumber 

from 𝑘 = 0.0001 to 𝑘 = 0.0007 and it is shown in Figure 5. 

 

 
Figure 5 Graph of Dispersion Relation Against Horizontal Wavenumber 

 

Although the dispersion relation is equal to zero, but the value shows slight deviations around the 

zero frequency line in Figure 5. The dispersion relation is not constant at zero along the line due to the 

influence of topographic features. When the waves interact with the topographic features, the waves 

undergo reflection and refraction, which leads to slightly changes in the dispersion relation. 

 

4.6 Phase Speed 

Based on the equation of dispersion relation in (42), an equation which describes the phase speed of 
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internal gravity waves for case 3 can be obtained by dividing 𝜔 with 𝑘. The result is shown below. 

                                 𝑐𝑝 =  𝑈 −
𝑁

√𝑘2+𝑚2
                           (43) 

Since the dispersion relation is approximate to zero, hence the phase speed also approximate to zero. 

To investigate the changes of phase speed around the zero line, the graph of phase speed against 

horizontal wavenumber is plotted and it is shown in Figure 6. 

 

  
Figure 6 Graph of Phase Speed Against Horizontal Wavenumber 

 

The graph in Figure 6 shows that the phase speed is slightly change below zero value. The 

negative phase speed means that the internal gravity waves propagate in the opposite direction to the 

background horizontal wind speed when they passes through the topographic features. The positive or 

negative slopes along the line indicate dispersive behaviour of the waves. 

 

4.7 Group Velocity 

The dispersion relation in (42) can be used to obtain the group velocities of internal gravity waves in 𝑥 

and 𝑧 directions. The group velocity under case 3 can be written as follow. 

 𝐜𝑔 = (
𝜕𝜔

𝜕𝑘
, 0,

𝜕𝜔

𝜕𝑚
) = (𝑈 −

𝑁𝑚2

(𝑘2+𝑚2)
3
2

, 0,
+𝑁𝑘𝑚

(𝑘2+𝑚2)
3
2

)            (44) 

Based on (44), it indicates that the internal gravity waves have group velocity even though they have 

zero frequency. It means that the waves will transfer the energy when propagating. The graphs of group 

velocity vector field in both 𝑥 and 𝑧 directions are plotted in Figure 7 for analysis. 

 

             
Figure 7 Graph of Group Velocity Vector Field in 𝑥 and 𝑧 directions 

 

The graphs on Figure 7 shows that the vector arrows are increasing in sizes as the horizontal 

wavenumber increasing. The length of the vector arrows are longer in 𝑧-direction as compared to 𝑥-

direction due to higher value of the magnitude of group velocity. The presence of background horizontal 

wind speed, 𝑈 makes the waves propagate slowly along 𝑥-direction. 
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4.8 Energy of Internal Gravity Waves 

The existence of group velocity tends to the existence of energy along the wave propagation. This is 

because the energy transferred by the group velocity. By using the linearized equations in (7-10), an 

equation describes the conservation law of internal gravity waves energy is obtained as follow. 

                 (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
) 𝐸 + ∇ ∙ 𝐉 = 0              (45) 

where 𝐸 is the energy density and 𝐉 is the vertical flux of energy. Their expressions are 

              𝐸 = 
1

2
�̅�(𝑢′2

+ 𝑤′2
) +

𝑔2𝜌′2

2�̅�𝑁2       (46) 

                               𝐉 = 𝑝′(𝑢′, 0, 𝑤′)                 (47) 

The graphical representations of internal gravity waves energy against depth are shown in Figure 8. 

 

 
Figure 8 Graph of Energy Density for Internal Gravity Waves 

 

The graphs in Figure 8 show that the energy density of internal gravity waves remain the same 

at 2178.125 𝐽  for both horizontal wavenumber. This situation suggests that the energy density is 

independent of the horizontal wavenumber. The constant value of 𝐸 means that the energy distribution 

of waves in uniform as the waves move up and down over the hills. 

 

5. Conclusion 

In this paper, the linearized partial differential equation in two-dimensions in the presence of topographic 

features of hills have been derived. The second order ordinary differential equation is solved for three 

distinct cases. Based on the solutions obtained, the physical quantities of internal gravity waves above 

topography for each cases are analysed using graphical representations. It is observed that each case 

show variations in the value of physical quantities based on variations in horizontal wavenumber. In 

case 3, where 𝑁2 > 𝑘2𝑈2, there is an observation of the absence of angular frequency when the waves 

propagate above hills, which resulting in an approximate zero phase speed. However, despite this 

absence, the internal gravity waves exhibited a group velocity as well as energy transfer. The vector 

arrows of group velocity are longer in 𝑧-direction as compared to 𝑥-direction. The graphs of energy 

density show that it is constant along the vertical axis. The energy distribution is uniform when the 

waves move within the fluid and it is independent of the horizontal wavenumber. In this study, the value 

of background horizontal wind speed, 𝑈  and buoyancy frequency, 𝑁  are treated as positive real 

numbers in analysis. Therefore, in future research, 𝑈 can be treated as an oscillating function, while 𝑁 

can be treated as a function along the vertical axis. By implementing these recommendations, the 

precision of internal gravity waves model can be enhance significantly in future research. 
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