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Abstract 

The main objective of the research is to investigate the solute dispersion in Casson blood circulation 

through a stenosed artery with rigid permeable wall. Blood is modelled as a Casson fluid. The study 

formulates the Casson fluid model for a circular straight pipe where the constitutive and momentum 

equations are solved to determine fluid velocity. By using the Generalized Dispersion Model (GDM), 

the convective diffusion equation is solved analytically to obtain dispersion function, mean concentration 

and concentration. Both steady and unsteady dispersion functions are investigated to provide a 

comprehensive understanding of solute behaviour. Increased wall permeability improves solute 

dispersion in the arterial core while decreasing it close to the walls, which lowers flow resistance and 

improves solute transport. The effects of permeability on the solute dispersion in hemodynamic is 

analyzed and particularly relevant in altering the flow dynamics with the presence of stenosis and 

stenosis height on the blood velocity, for example in atherosclerosis. Contrarily, larger stenosis heights 

result in greater flow resistance and lower central peak velocities but greater central dispersion, which 

suggests a more turbulent and mixed core flow.  
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Introduction 

Atherosclerosis affects the blood vessels, causing low-density lipoproteins (LDLs) and cholesterol to 

build up in the inner walls, forming plaques that thicken and stiffen the vessel walls. This constriction 

hinders hemodynamics to organs and can lead to total obstruction. Blood coagulation issues increase 

the risk of thrombosis and ischemic damage.[1] Understanding mathematical modeling of 

hemodynamics, especially using the Casson fluid model, is crucial. Blair [2] and Iida [3] state that 

Casson and Herschel-Bulkley fluid models investigate arterial porosity. Casson fluid is preferred for 

cardiovascular research due to its simplicity and effectiveness.  

 Considering slip at vessel wall, Bigyani and Batra [4] examined an arteriosclerotic artery with a 

hard permeable wall for its consistent, laminar, and fully developed hemodynamics. Representing 

blood, they utilized a Casson fluid model and investigated how yield stress affected hemodynamics in 

arteriosclerotic vessels. For varying arteriosclerotic lesion diameters, they derived the variations of flow 

resistance, wall shear stress, permeability parameter, slip coefficient, and Casson number. Particularly 

in larger channels, fluid models including Newtonian fluid model often explain hemodynamics as a 

homogeneous, incompressible fluid with constant viscosity. Blood behaves, nevertheless, as a non-

Newtonian fluid in smaller channels and under different shear rates. Considered variable viscosity that 

changes exponentially across channel and offers the most correct explanation for reduced shear rates, 

the Casson fluid model which characterizes hemodynamics through narrow vessels fits Divya et al.  [5]. 

 Using the Sisko model, Toghraie et al. [6] examined blood as a non-Newtonian fluid under 

constant heat fluxes directed at the arterial wall. Their work replicated blood as a Newtonian fluid 
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in a rigid tube, emphasizing blood's non-Newtonian character brought on by changes in shear viscosity 

resulting from changes in blood cells. Providing insights on hemodynamics transit mechanisms and 

drug dispersion rates, Rana and Liao [7] examined solute dispersion in non-Newtonian Carreau-Yasuda 

and Carreau fluids in a straight tube with wall absorption or reaction. They solved non-linear issues with 

homotopy analysis and the generalized dispersion model. Emphasizing the health hazards of stenosis, 

Ali et al. [8] investigated hemodynamics in stenosed arteries using a mathematical model and the finite 

difference approach to address the numerical problem.  

Investigating the unstable solute dispersion in constant Casson blood circulation via a stenosed 

artery with inflexible permeable wall is the major objective of this study. The aims are thus to develop 

the mathematical model of the Casson blood circulation via a stenosed artery with a hard permeable 

wall. Apart from that, one can solve the momentum and constitutive equations to derive Casson blood 

circulation velocity over a rigidly permeable wall stenosed artery. Furthermore, integration and Fourier 

Transform allow one to solve unsteady convective-diffusion equation utilizing Generalized Dispersion 

Model (GDM) to derive mean concentration of solute, dispersion function, and longitudinal dispersion 

coefficient. Furthermore, to investigate the solute dispersion in Casson blood circulation via a rigid 

permeable wall stenosed artery. 

 

Mathematical Formulation 

 

 
 

Figure 1 Geometry of pipe flow in the presence of stenosis with permeable wall 

 

Figure 1 depicts the geometry of the arteriosclerotic artery where L  serves as the length of the conduit, 

u  serves as the axial velocity,   serves as the height of the stenosis, ( )R z  serves as the stenosed 

artery, 0R  serves as the arterial radius in outer flow region of the stenosis,   serves as the azimuthal 

angle, z  serves as the axial coordinate for the circular pipe, and pr  serves as the radius of the plug 

flow region in a circular pipe. 

 

The momentum equation for steady flows is given by 

 

 ( )
1

,
d dp

r
r dr dz

 = −  (1) 

 

where   serves as the shear stress and p  serves as the pressure. The boundary condition of Eqn. 

(1)is set to be 

 finite at 0.r = =  (2) 

 

The Casson fluid model’s constitutive equation is given by 
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k
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   

 


− 

− = 
 

 (3) 

 

where y  serves as the yield stress and ck  serves as the viscosity coefficient of Casson fluid. For the 

unknown velocity ,u  the is a slip condition at the wall of the circular pipe and thus the boundary 

conditions are given by 

 ( ) at Bu u r R z= =  (4) 

 

where the slip velocity 
Bu  satisfies the relation  

 
1/2 2

.B

r R c

du k dp
u

dr dzk k



=

 
= + 

 
 (5) 

 

Here,   serves as the slip coefficient, k  serves as the permeability and Qu  serves as the velocity in 

the porous region. In the arterial wall, a stenosis is assumed to have developed in an axially symmetric 

manner, which depends upon the axial distance z  and the height of its growth. In such a case, the 

arterial radius ( )R z  is given by 

 ( )
( ) 0

0

0 0 0

2
1 1 cos ;  for 

2 2

1                                                                ; otherwise

h
R z l

z d d z d l
R z R R l

     
 = − + − −   +    =      

=

 (6) 

 

where ( )R z  serves as the radius of the stenosed segment, 0R  serves as the arterial radius in outer 

region of stenosis, 
0l  serves as the length of stenosis, d  being its location and 

h  serves as the 

maximum height of the stenosis assumed to be much smaller in comparison to the radius, 0R  of 

stenosed artery 0h R  . The convective-diffusion equation is given by 

 
2

2

1
,m

C C
u D r C

t z r r r z

      
+ = +  

      
 (7) 

 
where the initial condition is given by 

 ( )
0  if , 

2
, ,0

0   if ,
2

s

s

z
C z

C r z
z

z




= 
 


 (8) 

 

where 0C  serves as the reference concentration and sz  serves as the length of the solution. As per 

mentioned above, the boundary condition for a finite level of an axial dispersion according to Gill and 

Sankarasubramanian [9] is given by 

 ( ), , 0,C r t =  (9) 
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for a symmetry at the circular pipe centre 0r = , the boundary condition is given by  

 ( )0, , 0,
C

z t
r


=


 (10) 

while for the solute concentration gradient at the wall ( )r R z= , the boundary condition is given by  

 ( )( ), , 0.
C

R z z t
r


=


 (11) 

 

Dimensionless variables 

The dimensionless variables are written as detailed below: 

 

 

2

0

0 0 0 0 0 0

2 2
00 0

0 0 0

,  ,  ,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  .

pm s

m s p

m

y cs c

s y

m m c

ru u za uu uC u r
C u u u u u r r z

C u u u u u a a D

k uz a u k uta dp p
z t P P

D D R dz k uR


 

+ −
+ −= = = = = = = = =

= = = = = − =

 (12) 

 

where 0 0,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  y m s p s cu t C u u u u u r r z z k R P  + −  are the dimensionless forms of the fluid 

characteristic velocity, time, shear stress, and yield stress; together with the solute concentration, 

velocity, mean velocity, outer and plug flow velocity, radial coordinate for circular pipe, plug core radius, 

axial distance, and solute length, the Casson fluid's viscosity coefficient, the artery's radius in the outer 

region of stenosis and pressure gradient. 

 

Governing Equation 

Substituting Eqn. (12) into Eqn. (1) the dimensionless momentum equation is obtained below 

 
( )

,
r p

r
r z

  
= −   

 (13) 

where p  serves as the pressure,   serves as the shear stress, z  serves as the axial coordinate for 

circular pipe, r  serves as the radial coordinate. The boundary condition of dimensionless momentum 

equation is given as detailed below: 

 finite at 0.r = =  (14) 

 

The dimensionless of constitutive equation of Casson fluid is given by  

 2y y

du

dr
   − = + −  (15) 

 

where u serves as the dimensionless of Casson fluid velocity, y  serves as the dimensionless yield 

stress and ck  serves as the dimensionless viscosity coefficient of Casson fluid. The boundary conditions 

are given by  

 ( ) at Bu u r R z= =  (16) 

 

The dimensionless of the radius artery in Eqn. (6) is given as detailed below 

 ( ) 0

0 0

2
1 1 cos .

2 2
zR

l
d

l
z

R

    
− + − −   


=

   

 (17) 
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Method of Solution 

Solving Eqn.(13) and Eqn. (15) using condition in Eqn.(14) and Eqn. (16) respectively, the 

dimensionless of velocity in the outer non-plug core region is obtained as detailed below:  

 

 ( )
( ) ( )

( )( )
2 2 3 3

2 2
2

,
4 2 2 3

p p

p B

r r R z rr R zdp
u r r r R z u

dz

 −  
= + − − − +  

   

 (18) 

 

where /dp dz  serves as the dimensionless of axial pressure gradient, 
mC  serves as the mean 

concentration of solute across a sectional area of the geometry, r  is plug core region, pr  serves as the 

dimensionless plug flow region, ( )R z  serves as the dimensionless of radius of the stenosed segment 

and 
Bu  serves as the dimensionless slip velocity 

Bu  which is given by  

 
1/2 2

.B

r R c

du k dp
u

dr dzk k



=

 
= + 

 
 (19) 

 

The dimensionless of velocity of fluid in the plug flow region is given as detailed below: 

 ( )
( ) ( )

( )( )
2 2 2 3 3

2 2
2

.
4 2 2 3

p p p

p p p B

r R z r R z rdp
u r r r R z u

dz

 −  
= + − − − +  

   

 (20) 

 

The dimensionless mean velocity is given by 

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1 5 37 3 3

4 3 242 2 22 2 2

2

112
.

16 12 21 336 3 3 2

p p p p Bp

m

R z R z r r R z r R z r R z u R zrdp
u

dzR z

  
  

= − − − + + − +  
  

  

 (21) 

Dimensionless convective-diffusion equation from Eqn. (7) is given by 

 
2

2

1
,m

C C
u D r C

t z r r r z

      
+ = +  

      
 (22) 

 

To solve Eqn.(22), the approach of Gill and Sankarasubramanian [9], Generalized Dispersion Model 

(GDM) in terms of derivative series expansion is applied as detailed below:  

 ( ) ( )1 1

1 1

, ( ) , ,
i

m m

i i
i

C C
z t K t z t

t z



=

 
=

 
  (23) 

 

where ( )iK t  represents the transport coefficient. The dispersion function of ( )1 ,f r t  plays an important 

role in calculating the mean concentration, ( )1,mC z t . The dispersion function is given as detailed below: 

 ( ) ( ) ( )1 1 1, , .s tf r t f r f r t= +  (24) 

( )1sf r  serves as the dispersion function in the steady state and ( )1 ,tf r t  serves as the dispersion 

function in the unsteady state that describes the time dependent nature of the dispersion of the solute. 

The differential equation is given by 
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 ( )( )11
0  if  0s

p m p

f
r u r u r r

r r r

−  
− − =   

  
 (25) 

 

and the dispersion function in outer region is given by 

 ( )( ) ( )11
0  if  s

m p

f
r u r u r r R z

r r r

+  
− − =   

  
 (26)

   

Eqn. (25) and Eqn. (26) are solved using Eqn. (26) to get 1sf
−

and 1sf
+

as detailed below 

 ( )1 0 0,sf

t


=


 (27) 

 ( )1 0,sf
R z

r


=


 (28) 

and 

 ( )1 0, 0.tf
t

r


=


 (29) 

 

The steady dispersion function in the plug flow region, 1sf
−

and outer flow region 1sf
+

 are given as 

detailed below: 

 
( )

( ) ( ) ( )
2 4 3

2 2 2 2 2 22
1 2

1 1 2 1

48 12 21 32672

p

s p p p

Ar r
f CI Ar r Ar r R z Ar r R z Ar R z

R z
− = − + + − +  (30) 

and  

 ( )
( )

( ) ( ) ( ) ( )

7

2 42

4 3 4 2

1 2

3

2 2 2 4 42

81 1 115 1

68 147 18 28224 12672

2 1 1 1
log log ,

21 32 336 336

p p

s p p p

p p p p

Ar r Ar r
f CI Ar Ar r r Ar r R z

R z

Ar r R z Ar R z Ar r Ar r

+ = − + − − + +

− + − +

 (31) 

 

where ( )( ) /A F t BP B= +  and /P dp dz=  and  

 
( )

( ) ( ) ( )
( ) ( )( )

7

4 6 3 442

4

2

1513 7 1
log log .

7056 360 539 96 336 3365280

pp p p p

p p

r R zr r r R z rR z
CI A r r R z

R z

 
 

= + − + − − + 
 
 

 (32) 

 

The general solution of ( )1 ,tf r t  is given as 

 ( )
( )

( )
( )

( ) ( )
2

1 0 1 02
1 0 0

2
, .m

R z

t

t m s m

m m

f r t J r f r rdr e J r
J

 



−

=

 
 = −
 
 

   (33) 
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Inverse Fourier Transform (IFT) yields the solution of mean concentration of solute ( )1,mC z t  Iida [3] 

 ( ) 1 1
1

2 21
, .

2 2 2

s s

m

z z

z z
C z t erf erf

 

    
    − +
    = +
    

    
    

 (34) 

 

The local concentration ( )1, ,C r z t  is produced by the following substitutions (ignoring the higher order 

terms) of ( )1,mC z t  and ( )1 ,f r t . It is given as detailed below 

 ( ) ( ) ( ) ( )1 1 1 1

1

, , , , , .m

m

C
C r z t C z t f r t z t

z


= +


 (35) 

 

 

 

Results and Discussion 

 

Velocity of the Blood Flow 

This section addresses the anticipated outcomes, including the increasing and decreasing of the 

velocity, steady dispersion function, unsteady dispersion function, and dispersion function with the 

effect of the permeability, height of the stenosis, radius of the plug flow region in a circular pipe, arterial 

radius in outer flow region of the stenosis and viscosity coefficient of Casson fluid.  

 

  
 

Figure 2: Variation of  normalized velocity, u  for 

different values of permeability, k  with 

01,  1,  / 4,  0,  0.2, 1,  c pk dp dz r R = = = − = = =  

 00.2,  3, 2,a l d= = =  and 4z = . 

 

Figure 3: Variation of normalized velocity, u  for 

different height of the stenosis,   with 

00.01,  1,  1,  / 4,  0, 1,c pk k dp dz r R= = = = − = =   

 0 0.2,  3, 2,a l d= = =  and  4z = . 

 

 Figure 2 depicts the variation of normalized velocity, u  for different values of permeability, k  

with 0 01,  1,  / 4,  0,  0.2,  1,  0.2,  3,  2,c pk dp dz r R a l d = = = − = = = = = =  and 4z = . As permeability 

escalates, the normalized velocity at the arterial core escalates. Higher permeability leads to decreased 

normalized velocity near the artery wall. Increased permeability allows more fluid to pass through the 

artery wall, reducing the overall flow resistance. This increase in resistance increases the peak 

normalized velocity at the centre because the fluid spreads more evenly throughout the artery. 

 

Figure 3 depicts the variation of normalized velocity, u  for different height of the stenosis,   

with  0 00.01,  1,  1,  / 4,  0,  1,  0.2,  3, 2,c pk k dp dz r R a l d= = = = − = = = = =  and  4z = . As the height of the 
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stenosis escalates, the normalized velocity reduces. This means higher stenosis heights lead to lower 

peak normalized velocities and a steeper decrease in normalized velocity away from the centre. Higher 

stenosis heights increase flow resistance, which reduces the overall fluid normalized velocity and results 

in lower peak normalized velocities. 

Steady Dispersion Function of Solute 

Figure 4 depicts the variation of steady dispersion function for different values of permeability, k  in 

the hemodynamics with 0 0/ 4,  0.2,  0.001,  1,  3,  2,  4,pdp dz r R l d z= − = = = = = =  and 1ck = . As 

permeability escalates, the dispersion at the arterial core reduces, while the dispersion near the wall 

reduces. This means higher permeability results in lower dispersion at the centre and lower dispersion 

near the wall. The sharp peak in the graph indicates a significant change in dispersion at the centre 

due to increased permeability. This peak occurs because higher permeability allows more fluid to 

pass through the artery wall, causing a marked increase in dispersion at the centre compared to the 

outer regions. The steep change at the centre reflects the significant impact of permeability on the 

fluid's dispersion behaviour in this region. 

 

  
 
Figure 4: Variation of steady dispersion function 

for different values of permeability, k  in the 

hemodynamics with / 4,  0.2,  dp dz = − =  

00.001,  1,pr R= =  
0 3,  2,  4,  l d z= = = and 1ck = . 

 

Figure 5: Variation of steady dispersion 

function for different values of height of the 

stenosis at the middle point,   in the 

hemodynamics with 

0 0/ 4,  0.001,  1,  3,  2,  4,pdp dz r R l d z= − = = = = =  

1,ck =  and 0.01k = . 

 

 Figure 5 depicts the variation of steady dispersion function for different values of height of the 

stenosis at the middle point,   in the hemodynamics with 0 0/ 4,  0.001,  1,  3,  2,pdp dz r R l d= − = = = =  

4,  1,cz k= =  and  0.01k = .  As the height of the stenosis escalates, the dispersion at the arterial core 

escalates, while the dispersion near the wall reduces. This means higher stenosis heights result in 

higher dispersion at the centre and lower dispersion near the wall. The sharp peak at the centre of the 

hemodynamics indicates a significant change in dispersion due to the stenosis. The presence of a 

permeable wall allows more fluid to pass through, causing a marked increase in dispersion at the centre 

compared to the outer regions. This steep change at the centre reflects the significant impact of stenosis 

height on the fluid's dispersion behaviour in this region. 

 

Unsteady Dispersion Function of Solute 

Figure 6 depicts the variation of unsteady dispersion function for different values of permeability, k  in 

the hemodynamics with  0 0/ 4,  0.2,  0.001,  0.1,  1,  1,  3,pdp dz r t b R l= − = = = = = = 2,  4,d z= =  and 

1ck = . As permeability escalates, the unsteady solute dispersion at the arterial core escalates slightly. 
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Conversely, the unsteady solute dispersion near the wall also escalates but to a lesser extent. This 

means that higher permeability results in higher unsteady solute dispersion both at the centre and near 

the wall, although the increase is more significant at the centre. It means that the increase in unsteady 

solute dispersion is greater or more evident at the arterial core compared to the increase near the wall. 

 

  
Figure 6: Variation of unsteady dispersion 

function, 
1tf  for different values of permeability, k  

in the hemodynamics with / 4,  0.2,dp dz = − =

0 0 0.001,   0.1,  1,  1,  3,  2,  4,pr t b R l d z= = = = = = =  

and 1ck = . 

Figure 7: Variation of unsteady dispersion 

function, 1tf  for different values of height of the 

stenosis at the middle point,   in the 

hemodynamics with / 4,  0.001,pdp dz r= − =  

0 01,  1,  3,b R l= = =  2,  4,  0.01,d z k= = =  and 

1ck = . 

 

 Figure 7 depicts the variation of unsteady dispersion function for different values of height of the 

stenosis at the middle point,   in the hemodynamics with / 4,  0.001,  1,  0.1,pdp dz r b t= − = = =

0 01,  3,  2,  4,  0.01,R l d z k= = = = =  and 1ck = . As the height of the stenosis escalates, the unsteady 

solute dispersion at the arterial core reduces. Conversely, the unsteady solute dispersion near the wall 

escalates. This means that higher stenosis heights result in lower dispersion at the centre and higher 

dispersion near the wall which can impact the effectiveness of solute transport and potential drug 

delivery systems within the artery. The decrease in unsteady solute dispersion at the centre with higher 

stenosis heights implies that the stenosis causes lower mixing and turbulence in the central region of 

the hemodynamics. Conversely, the increase in dispersion near the wall suggests that the stenosis 

stabilizes the flow in the peripheral regions, increasing mixing. Overall, higher stenosis heights lead to 

more significant disruption and mixing in the central flow while making the outer flow regions more 

stable. 

 

Dispersion Function of Solute 

Figure 8 depicts the dispersion function variation for different values of permeability, k  in the 

hemodynamics with 0 0/ 4,  0.2,  0.001,  0.1,  1,  1,  3,  2,  4,pdp dz r t b R l d z= − = = = = = = = =  and 1ck = . 

As the permeability escalates, the dispersion function reduces at the centre, and escalates near the 

artery wall, implying that solute dispersion is reduced in the central region and enhanced at the 

boundaries. This suggests that a permeable wall allows less solutes to disperse into the centre of the 

hemodynamics, leading to a concentrated dispersion at the centre and a higher concentration near the 

vessel wall. At the arterial core, there is a sharp peak in the dispersion function, indicating a higher 

concentration of solutes when permeability is present due to the significant concentration gradient 

created by the initial dispersion from the centre outward. This implies that with increased permeability, 

solutes are more effectively transported. 

 

 



Dompok and Jaafar (2024) Proc. Sci. Math. 21: 40-50 

 49 

  

Figure 8: Dispersion function variation, 
1f   for 

different values of permeability, k  in the 

hemodynamics with / 4,  0.2,  dp dz = − =  

0.001,  0.1,  1,pr t b= = =
0 0 1,  3,  2,  4,R l d z= = = =   

and  1ck = . 

Figure 9: Dispersion function variation, 
1f   for 

different values of the height of stenosis at the 

middle point,   in the hemodynamics with 

0/ 4,  0.001,  0.1,  1, 1,pdp dz r t b R= − = = = =  

0 3,  2,  4,  0.01,  l d z k= = = = and 1ck = . 

 

  

 Figure 9 depicts the dispersion function variation for different values of the height of stenosis at 

the middle point,   in the hemodynamics with 0/ 4,  0.001,  0.1,  1,  1,pdp dz r t b R= − = = = =  

0 3,  2,  4,  0.01,l d z k= = = =  and 1ck = . As the height of the stenosis escalates, the dispersion function 

at the arterial core escalates, while the dispersion function near the wall reduces. This implies that 

higher stenosis stabilizes the central flow with reduced dispersion, leading to lower central blood 

normalized velocity, while increasing mixing and turbulence in the peripheral regions, resulting in higher 

blood normalized velocity near the wall. The sharp peak at the centre indicates significant changes in 

dispersion due to the presence of a permeable wall, which allows more fluid to pass through, increasing 

central mixing and turbulence compared to the outer regions. This suggests that the stenosis and 

permeability collectively enhance central dispersion and stabilize outer flow. 

 

Conclusion 

The study concludes that the solute dispersion in Casson blood circulation through a stenosed artery 

with a rigid permeable wall is significantly influenced by key parameters such as permeability and the 

height of the stenosis. The findings reveal that increased wall permeability enhances solute dispersion 

at the artery's centre, while reducing it near the walls, thereby lowering flow resistance and facilitating 

better solute transport. Higher stenosis heights, on the other hand, increase flow resistance, leading to 

lower central peak velocities but higher dispersion at the centre, indicating a more turbulent and mixed 

central flow. These insights into the dynamics of solute dispersion under varying conditions of 

permeability and stenosis provide valuable implications for designing more effective medical 

interventions and drug delivery systems targeting arterial diseases. 
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