
 
https://science.utm.my/procscimath 

Volume 24 (2024) 47-55 

 47 

 

Numerical Solution of Unsteady Burger’s Equation 

 
Fitrah Atikah Aminoordin, Shazirawati Mohd Puzi 

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia 
Corresponding author: shazirawati@utm.my 

 

Abstract Burger’s equation is a basic partial difference equation that can model nonlinear waves and 

fluid dynamics. This study presents the numerical solutions of Burger’s equation using explicit and 

implicit finite difference schemes. In these methods, the second-order central finite differences are 

used to discretize the equation into an ordinary differential equation. Numerical calculations are 

conducted using C++ and MATLAB software and the results are demonstrated using Microsoft Excel. 

Numerical results are validated by comparing the accuracy of the results with the analytical solution. 

In this work, the explicit and implicit finite difference schemes approach is used to numerically solve 

the nonlinear unsteady Burger’s equation, which focuses on accuracy and stability to produce results 

that closely resemble the analytical solution. 

Keywords Partial Differential Equations; Explicit Finite Difference Scheme; Implicit Finite 

Difference Scheme; Ordinary Differential Equations (ODE) 

 

1. Introduction 

As a simplified version of the Navier-Stokes equation, Burger’s equation is frequently utilized to 

investigate rarefaction and shock waves. Named after Dutch mathematician Johannes Martinus 

Burgers, the equation incorporates the Reynold number (Re) to characterize fluid flow, which 

measures the relative importance of viscous versus inertial forces. This dimensionless number, 

introduced by Osborne Reynolds, helps predict fluid behaviours like turbulence onset. 

          To solve the unsteady Burger’s equation, numerical methods such as the method of lines 

(MOL) and finite difference method (FDM) are commonly employed. This study focuses on solving the 

unsteady Burger’s equation, a nonlinear partial differential equation significant in fluid dynamics and 

wave propagation studies. The research aims to explore and implement suitable numerical methods, 

specifically explicit and implicit finite difference schemes, to solve this equation. The study compares 

the accuracy of these numerical approximations with analytical solutions. 

 

2.     Literature Review 

 

2.1. Burger’s Equation 

Burger’s equation, a mathematical model combining linear diffusion and nonlinear wave motion, is 

used to study fluid dynamics and nonlinear wave evolution in a one-dimensional medium. It is an 

expansion of the linear Burger’s equation, addressing both convection and diffusion. The nonlinear 

Burger’s equation is often written as:  

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝑣

𝜕2𝑢

𝜕𝑥2
 

                [1] introduced a numerical method combining the modified cubic B-spline differential quadrature 

(CN-MCDQ) technique with the Crank-Nicolson scheme to approximate solutions to Burger’s 

equation. This method approximates derivatives using differential quadrature, resulting in a system of 

equations solved with the Crank-Nicolson technique, proving to be accurate, efficient, and user-

friendly compared to other numerical solutions. The differential quadrature method for solving partial 

differential equations was first proposed by Bellman et al. [2]. 
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2.2. Unsteady Burger’s Equation 

[3] introduces new fully implicit numerical schemes for solving one-dimensional and two-dimensional 

unsteady Burger’s equation. This approach transforms the equation into a nonlinear system of 

ordinary differential equations (ODEs), using a second-order finite difference method for spatial 

discretization and the backward differentiation formula of order two (BDF2) for time discretization. 

Thomas’ method linearizes the nonlinear term, converting it into a system of linear algebraic 

equations. The schemes, tested with Dirichlet and Neumann boundary conditions, are straightforward, 

precise, and efficient, even at high Reynold numbers. 

          [4] propose new numerical methods for solving the nonlinear unsteady Burger’s equation. 

These methods discretize all variables except time, transforming the PDE system into a nonlinear 

ODE system. Stability is confirmed using Lyapunov’s criteria, and implicit stiff solvers with backward 

differentiation formulas of orders one, two, and three are used to solve the nonlinear ODE system. 

In this study, the one-dimensional nonlinear unsteady Burger’s equation is considered: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕
2
𝑢

𝜕𝑥2
      (1) 

 

 

2.3. Finite Difference Method 

The finite difference method (FDM) is a set of numerical techniques used to solve differential 

equations by approximating derivatives with finite differences. This process, called discretization, 

breaks the spatial domain and period into finite steps. FDM transforms ordinary and partial differential 

equations, whether linear or nonlinear, into systems of linear equations that can be solved using 

matrix algebra techniques. Its efficiency in computation and ease of implementation makes FDM a 

widely used approach in modern numerical analysis. 

          For solving the one-dimensional equation (1), the explicit scheme and the implicit scheme are 

used. For the explicit method, a forward difference and a second-order central difference for the space 

derivative are used. The recurrence equation: 

𝜕𝑢

𝜕𝑡
≈
𝑢𝑖
𝑗+1
−𝑢𝑖

𝑗

𝑘
       

𝜕2𝑢

𝜕𝑥2
≈
𝑢𝑖+1
𝑗
−2𝑢𝑖

𝑗
+𝑢𝑖−1

𝑗

ℎ2
     (2) 

 

The recurrence equation for the implicit method: 

𝜕𝑢

𝜕𝑡
≈
𝑢𝑖
𝑗+1
−𝑢𝑖

𝑗

𝑘
       

𝜕2𝑢

𝜕𝑥2
≈
𝑢𝑖+1
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖−1

𝑗+1

ℎ2
     (3) 

 

          The difference between the precise analytical answer and the approximation in a method’s 

solution is known as the error. Round-off error, or the loss of precision resulting from computer 

rounding of decimal quantities, and truncation error, or discretization error, or the difference between 

the exact solution of the original differential equation and the exact quantity assuming perfect 

arithmetic, are the two sources of error in finite difference method. 

 

3.     Methodology 

 

3.1. Discretization of One-Dimensional Nonlinear Unsteady Burger’s Equation Using  

  Explicit Finite Difference Scheme 

An explicit finite difference scheme discretizes a one-dimensional nonlinear unsteady Burger’s 

equation by approximating the continuous partial differential equation on a discrete grid in both space 

and time. The spatial domain is divided into a grid of points with a uniform spatial step size, and the 

time domain is separated into time steps of a specified size. This numerical approach allows for the 

solution of the PDE by iteratively updating the values at each grid point. 
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The forward difference method and the central finite difference are used to discretize equation (1) 

into: 

𝑢𝑖
𝑗+1

= 𝑢𝑖
𝑗
+ 𝑘 [

1

𝑅𝑒
(
𝑢𝑖+1
𝑗
−2𝑢𝑖

𝑗
+𝑢𝑖−1

𝑗

ℎ2
) − 𝑢𝑖

𝑗
(
𝑢𝑖+1
𝑗
−𝑢𝑖−1

𝑗

2ℎ
)]   (4) 

 

3.2. Discretization of One-Dimensional Nonlinear Unsteady Burger’s Equation Using  

  Implicit Finite Difference Scheme 

An implicit finite difference scheme discretizes the one-dimensional nonlinear unsteady Burger’s 

equation by approximating the continuous PDE with a numerical scheme where future values of the 

dependent variable are determined from current values through algebraic equations. This approach is 

particularly effective for PDEs with stability or convergence issues that explicit schemes struggle to 

solve. Similar to the explicit scheme, it requires discretization in both spatial and temporal domains. 

After discretization, equation (1) becomes:  

𝑢𝑖
𝑗+1
−𝑢𝑖

𝑗

𝑘
+ 𝑢𝑖

𝑗
(
𝑢𝑖+1
𝑗+1
−𝑢𝑖−1

𝑗+1

2ℎ
) =

1

𝑅𝑒
(
𝑢𝑖−1
𝑗+1
−2𝑢𝑖

𝑗+1
+𝑢𝑖+1

𝑗+1

ℎ2
)    (5) 

Rearrange equation (5),  

𝑢𝑖
𝑗+1

− 𝑢𝑖
𝑗
+

𝑘

2ℎ
𝑢𝑖
𝑗
(𝑢𝑖+1
𝑗+1

− 𝑢𝑖−1
𝑗+1
) =

𝑘

ℎ2𝑅𝑒
(𝑢𝑖+1
𝑗+1

− 2𝑢𝑖
𝑗+1

+ 𝑢𝑖−1
𝑗+1
)   

Let 𝛼 =
𝑘

ℎ2𝑅𝑒
 and 𝛽 =

𝑘

2ℎ
, 

Factoring 𝑢𝑖−1
𝑗+1

, 𝑢𝑖
𝑗+1

 and 𝑢𝑖+1
𝑗+1

 at the left-hand side yields : 

(−𝛼 − 𝛽𝑢𝑖
𝑗
)𝑢𝑖−1
𝑗+1

+ (1 + 2𝛼)𝑢𝑖
𝑗+1

+ (𝛽𝑢𝑖
𝑗
− 𝛼)𝑢𝑖+1

𝑗+1
= 𝑢𝑖

𝑗
  (6) 

 Equation (6) implies that for each step time, it will end up with a system of linear equations with 

A as a tridiagonal matrix 𝐴�̅� = �̅� 

For illustration, for 5 × 5 rectangular grid size, and with known initial and boundary conditions, 

then by equation (6) at 𝑗 = 0 we obtain the linear system: 

(−𝛼 − 𝛽𝑢1
0)𝑢0

1 + (1 + 2𝛼)𝑢1
1 + (𝛽𝑢1

0 − 𝛼)𝑢2
1 = 𝑢1

0 

(−𝛼 − 𝛽𝑢2
0)𝑢1

1 + (1 + 2𝛼)𝑢2
1 + (𝛽𝑢2

0 − 𝛼)𝑢3
1 = 𝑢2

0 

(−𝛼 − 𝛽𝑢3
0)𝑢2

1 + (1 + 2𝛼)𝑢3
1 + (𝛽𝑢3

0 − 𝛼)𝑢4
1 = 𝑢3

0 

(−𝛼 − 𝛽𝑢4
0)𝑢3

1 + (1 + 2𝛼)𝑢4
1 + (𝛽𝑢4

0 − 𝛼)𝑢5
1 = 𝑢4

0 

Which can be seen as a tridiagonal system : 

(

 
 

1 + 2𝛼 𝛽𝑢1
0 − 𝛼 0 0

−𝛼 − 𝛽𝑢2
0 1 + 2𝛼 𝛽𝑢2

0 − 𝛼 0

0 −𝛼 − 𝛽𝑢3
0 1 + 2𝛼 𝛽𝑢3

0 − 𝛼

0 0 −𝛼 − 𝛽𝑢4
0 1 + 2𝛼 )

 
 

(

 
 

𝑢1
1

𝑢2
1

𝑢3
1

𝑢4
1
)

 
 
=

(

 
 

𝑢1
0 − (−𝛼 − 𝛽𝑢1

0)𝑢0
1

𝑢2
0

𝑢3
0

𝑢4
0 − (𝛽𝑢4

0 − 𝛼)𝑢5
1
)

 
 

 

In the same manner, the linear tridiagonal system for 𝑗 = 2, 3, and 4 can be obtained. For a larger grid 

size, a computer program is used as a computational tool in obtaining the numerical solutions.  
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4.     Results and Discussion 

 

4.1. Parameter Settings 

Considering the nonlinear unsteady Burger’s equation (1), the following parameter settings are used 

for experimental purposes:  

∆𝑡 = 0.001, ∆𝑥 = 0.05, 𝑅𝑒 = 10 

          In this study, C++ and MATLAB are used to get the numerical solutions and Microsoft Excel is 

used for diagram illustration. The accuracy of numerical solutions of explicit and implicit finite 

difference schemes are compared with the following analytical solutions: 

 

𝑢(𝑥, 𝑡) =
0.1𝑒−𝐴+0.5𝑒−𝐵+𝑒−𝐶

𝑒−𝐴+𝑒−𝐵+𝑒−𝐶
     (7) 

where 

 

𝐴 = 0.05𝑅𝑒(𝑥 − 0.5 + 4.95𝑡) 

𝐵 = 0.25𝑅𝑒(𝑥 − 0.5 + 0.75𝑡) 

𝐶 = 0.5𝑅𝑒(𝑥 − 0.375) 

Initial condition at 𝑡 = 0:  

𝑢(𝑥, 0) =
0.1𝑒−𝐴+0.5𝑒−𝐵+𝑒−𝐶

𝑒−𝐴+𝑒−𝐵+𝑒−𝐶
     (8) 

Boundary conditions  

at 𝑥 = −4: 

𝑢(−4, 𝑡) =
0.1𝑒−𝐴 + 0.5𝑒−𝐵 + 𝑒−𝐶

𝑒−𝐴 + 𝑒−𝐵 + 𝑒−𝐶
 

at 𝑥 = 4: 

𝑢(4, 𝑡) =
0.1𝑒−𝐴+0.5𝑒−𝐵+𝑒−𝐶

𝑒−𝐴+𝑒−𝐵+𝑒−𝐶
     (9) 

 

The analytical solutions are computed by using MATLAB and the results are visualized by using 

Microsoft Excel. 
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Figure 1 Analytical solutions for ∆𝑥 = 0.05 and ∆𝑡 = 0.001 

 

4.2. Numerical Results of Explicit Finite Difference Scheme 

 The numerical results of Burger’s equation in equation(1) are calculated explicitly by using C++ 

software with the initial condition and boundary conditions in equations (8) and (9). The results are 

visualized using Microsoft Excel and compared with the analytical solution in equation (7).  

 

Table 1: Abbreviated explicit solutions for ∆𝑥 = 0.05 and ∆t=0.001 

t/x -4 -3.95 -3.9 … 3.9 3.95 4 

0 0.999988 0.999986 0.999984 … 0.100445 0.100403 0.100364 

0.001 0.999988 0.999986 0.999984 … 0.100445 0.100403 0.100365 

0.002 0.999988 0.999986 0.999984 … 0.100446 0.100403 0.100364 

0.003 0.999988 0.999986 0.999984 … 0.100446 0.100404 0.100364 

0.004 0.999988 0.999986 0.999985 … 0.100446 0.100403 0.100364 

0.005 0.999988 0.999986 0.999985 … 0.100446 0.100403 0.100366 

… … … … … … … … 

0.026 0.999988 0.999987 0.999985 … 0.100452 0.100409 0.10037 

0.027 0.999988 0.999987 0.999985 … 0.100452 0.100409 0.10037 

0.028 0.999988 0.999987 0.999985 … 0.100453 0.10041 0.10037 

0.029 0.999988 0.999987 0.999985 … 0.100453 0.10041 0.100371 

0.03 0.999989 0.999987 0.999985 … 0.100453 0.10041 0.100371 
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Figure 2 Explicit solutions for ∆𝑥 = 0.05 and ∆𝑡 = 0.001 

 

Based on the above results, the explicit and analytical solutions are compared to evaluate the 

accuracy of the results at 𝑡 = 0.015. The results are shown in Table 2. 

 

Table 2: Abbreviated comparison of explicit and analytical solutions at 𝑡 = 0.015 

𝒙 Explicit Numerical Analytical Absolute Error 

−4 0.999988 0.999988 0 

−3.95 0.999987 0.999987 0 

−3.9 0.999985 0.999985 0 

−3.85 0.999983 0.999983 0 

… … … … 

3.8 0.100548 0.100548 0 

3.85 0.100496 0.100496 0 

3.9 0.100449 0.100449 0 

3.95 0.100406 0.100406 0 

4 0.100368 0.100368 0 

 Average  0.000019 

 

 
Figure 3 Comparison of explicit and analytical solutions at 𝑡 = 0.015 

 

 Based on Table 2, the solutions of explicit are slightly different compared to analytical solutions 

with an average error of 0.000019. From the graph, the numerical curves have similar patterns to the 

analytical curve at 𝑡 = 0.015. Therefore, it can be concluded that an explicit finite difference scheme is 

a suitable method to solve Burger’s equation. 

 

4.3. Numerical Results of Implicit Finite Difference Scheme 

Using C++ software and the initial condition from equation (8) and the boundary conditions from 

equation (9), the numerical results of Burger’s equation in equation (1) are computed implicitly. 
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Table 3: Abbreviated implicit solutions for ∆𝑥 = 0.05 and 𝑡 = 0.001 

t/x -4 -3.95 -3.9 … 3.9 3.95 4 

0 0.999988 0.999986 0.999984 … 0.100445 0.100403 0.100364 

0.001 0.999988 0.953631 0.997836 … 0.096815 0.100403 0.100365 

0.002 0.999988 0.911026 0.993868 … 0.093442 0.100403 0.100365 

0.003 0.999988 0.871811 0.988369 … 0.090302 0.100403 0.100365 

0.004 0.999988 0.835664 0.981593 … 0.087376 0.100403 0.100365 

0.005 0.999988 0.802294 0.973759 … 0.084645 0.100403 0.100366 

… … … … … … … … 

0.026 0.999988 0.445493 0.753606 … 0.053104 0.100403 0.10037 

0.027 0.999988 0.436988 0.74422 … 0.052288 0.100403 0.10037 

0.028 0.999988 0.428868 0.735035 … 0.051507 0.100403 0.10037 

0.029 0.999988 0.421107 0.72605 … 0.050757 0.100403 0.100371 

0.03 0.999989 0.413683 0.717264 … 0.050038 0.100403 0.100371 

 

 
Figure 4 Implicit solutions for ∆𝑥 = 0.05 and ∆𝑡 = 0.001 

 

 The implicit solutions’ accuracy is evaluated by comparing them with the analytical solutions at 

𝑡 = 0.015. The results are displayed in Table 4 and Figure 5. 

 

Table 4: Abbreviated comparison of implicit and analytical solutions at 𝑡 = 0.015 

𝒙 Implicit Numerical Analytical Absolute Error 

−4 0.999988 0.999988 0 

−3.95 0.575008 0.999987 0.424979 

−3.9 0.868844 0.999985 0.131141 

−3.85 0.968485 0.999983 0.031498 

… … … … 

3.8 0.098969 0.100548 0.001579 
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3.85 0.091979 0.100496 0.008517 

3.9 0.065126 0.100449 0.035323 

3.95 0.100403 0.100406 0.000003 

4 0.100368 0.100368 0 

 Average  0.004008 

  

 
Figure 5 Comparison of implicit and analytical solutions at 𝑡 = 0.015 

 

 Based on Table 4 and Figure 5, implicit solutions are slightly different from analytical solutions. 

The average error is 0.004008, suggesting a near correspondence with the analytical solutions. It is 

also clear that the patterns of the numerical and analytical curves are nearly identical. Consequently, 

it may be said that a good way to solve Burger’s equation is to use an implicit finite difference 

scheme. 

 

Conclusion 

The study focuses on solving Burger’s equation using explicit and implicit finite difference schemes, a 

method commonly used in studying nonlinear waves and fluid dynamics. The accuracy of the 

numerical results is evaluated by comparing them with analytical solutions. The results show that 

explicit and implicit finite difference schemes are suitable for solving Burger’s equation due to their 

small absolute error. To achieve more accurate results, the grid size must be smaller. 
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