
 
Vol. 23, 2024, page 51-59 

 51 

  

Mathematical Modelling of Harmful Algal Blooms  

 
Santun Syafitri Mulyadi, Fatin Nadiah Mohamed Yussof 

Department of Mathematics, Universiti Teknologi Malaysia 

Corresponding author: fatinnadiah@utm.my 

 

Abstract 

An algal bloom is a condition where the excessive growth of algae, produce toxins and becoming 

harmful when it causes damaging effects. This study investigates a mathematical model of plankton-

nutrient interaction, analyze the stability of equilibrium points, examine the oscillation properties, and 

investigate the effect of environmental carrying capacity on the HAB model. This research proposes a 

mathematical model of HAB dynamics consists of phytoplankton and zooplankton to describe the 

interaction between phytoplankton and zooplankton, examining three equilibrium point. The stability of 

equilibrium points is analyzed, revealing both stable and unstable. The instability may be due to 

disruptions in both populations, while the stability exists when the populations converge to 0. The 

oscillation properties of the model show that phytoplankton initially grow, then drop due to resource 

depletion, reducing zooplankton predation and allowing phytoplankton recovery. Zooplankton 

populations decreases due to toxins from phytoplankton. To study equilibrium stability, the 

environmental carrying capacity (𝐾) is u sed. As 𝐾 increases, the system become stable up to a specific 

value. Beyond this, it becomes unstable changing to a neutral saddle equilibrium and no further 

bifurcations occur. Recommendations for future studies include investigating non-toxin phytoplankton 

and nutrient interactions, incorporating discrete-time delays, exploring other delays that could influence 

the stability, and investigate factors affecting HAB occurrence. 
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1. Introduction 

Harmful Algal Bloom (HAB) is an annual phenomenon that is harmful to animals, human and economic 

sectors [1],[2]. Economic effects include the wreckage of tourism attraction spots, since activities such 

as fishing and snorkelling cannot be carried out [3]. HAB happened due to excessive growth of algae 

in oceans, lakes, or rivers and it occurs when certain types of algae receive many nutrients from 

agricultural runoff or sewage discharge. 

 The first recorded occurrence of HAB in Malaysia was in 1976 [4] and it has been observed in 

many locations such as Tumpat, Kelantan [5], Sepanggar Bay off Kota Kinabalu, Sabah [6], and 

Tanjung Kupang, Johor [3]. Nutrient pollution, including increased levels of phosphorus and nitrogen, 

is a factor to  the occurrence of HABs [7]. 

 Phytoplankton are tiny, and photosynthetic organisms that float in water. Some types of 

phytoplankton can grow quickly which then can form dense concentrations or “blooms”. From [2], the 

main contributors to HAB are diatoms and dinoflagellate but there are also few other types which are 

cyanobacteria, green algae, and coccolithophore [8] and these usually referred as toxic phytoplankton 

(TPP). Apart from that, zooplankton also important in HAB formation. They are usually heterotrophic, 

meaning they feed on other organisms. [9] mentioned that some zooplankton such as Daphnia can 

interact with toxic cyanobacteria like Microcystis, which can affect the dynamics of HAB and can 

influence the sensitivity of zooplankton to toxins produced by harmful algae. 

 This research aims to (1) examine a mathematical model of plankton interaction (2) analyze 

the stability of equilibrium point and the oscillation properties of the system (3) investigate the effect of 

environmental carrying capacity on HAB model.  
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2. Literature Review 

 

2.1 Harmful Algal Bloom 

Harmful algal blooms (HABs) are very risky to human health mainly through the production of toxins by 

few species of algae. These toxins can enter the food chain through polluted shellfish, leading to various 

forms of shellfish poisoning if consumed. A massive algal bloom can also lead to oxygen depletion in 

the water, a phenomenon known as hypoxia, which can result in the mortality of aquatic life such as 

fish and shrimp. HAB can be recognized from the color of the water. Combination of organisms can 

color the water giving rise to red, mahogany, brown, and green tides [10]. These blooms can present a 

variety of colors due to the types of algae involved and the specific pigments they produce. For instance, 

green blooms are often caused by cyanobacteria such as Microcystis or Anabaena which will make the 

water become a bright green [11]. Red tides occur in coastal marine environments are caused by 

dinoflagellates. These blooms can change from reddish brown due to the pigment fucocanthin. 

 The occurrence of HAB has been observed in many countries globally. [12] documented blooms 

occurring in Indonesia during April 2004 and May 2005. These incidents were observed in three coastal 

bays: Jakarta Bay, Lampung Bay, and Ambon Bay. A massive fish killing were reportedly happened 

during that time due to the lack of dissolved oxygen caused breathing difficulties for the fish. The toxins 

from HAB can lead to various types of illnesses such as shellfish poisoning. For example, six persons 

were reported hospitalized due to paralytic shellfish poisoning (PSP) that happened in Tumpat, 

Kelantan [5]. Some HAB toxins also have neurotoxic effects that can lead to symptoms such as 

confusion, dizziness, headaches, and in severe cases, seizures [13].  

 

2.2 Prey-Predator Model 

The prey-predator model usually consists of differential equations that describe the interactions 

between prey and predator populations over time [14]. This formulation involves a pair of non-linear first 

order differential equation (ODE), serving as prey-predator model to show the interaction of two species 

in a biological system. For example, the Lotka-Volterra model, has been widely used to understand the 

dynamics of prey-predator interactions [15]. The general form of the Lotka-Volterra model is 

represented by the following equation: 

 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 

 

 

(1) 

where 𝑥 is the population of the prey species, 𝑦 is the population of the predator species, 𝛼 is the 

intrinsic growth rate of the prey population, 𝛽 is the predation rate coefficient, 𝛿 is the rate at which the 

predator population increases per prey consumed and 𝛾 is the death rate at the predator population. 

 

In the context of the formulation of HABs model, it has been assumed that the growth of 

phytoplankton population follows the logistic law with intrinsic growth rate ‘r’ and environmental carrying 

capacity ‘K’. As mentioned previously, some phytoplankton release toxic substances and hence reduce 

the growth of zooplankton by decreasing the grazing pressure. Zooplankton grazing plays an important 

role in the initial stages of outbreaks. Keeping these properties of phytoplankton-zooplankton population 

in mind, two types of predational forms have been assumed: simple law of mass action and Holling-

type response term [16]. When phytoplankton populations do not produce toxin, the predation rate will 

follow the simple law of mass action and in this case, zooplankton eating is proportional to the 

phytoplankton density and thus limiting the production of the phytoplankton. But, as liberation of toxin 

reduces the growth of zooplankton, causes substantial mortality of zooplankton and in this period, 

phytoplankton population is not easily available. Hence, a more common and obvious choice is of the 

Holing type II functional form to describe the grazing phenomena in the presence of toxic substances. 

From the above assumptions, the following differential equations can be formed: 
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𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐾
) − 𝛼𝑃𝑍, 

𝑑𝑍

𝑑𝑡
= 𝛽𝑃𝑍 − 𝜇𝑍 −

𝜃𝑃𝑍

𝛾 + 𝑃
. 

 

 

(2) 

Here, 𝑃 and 𝑍 represent the density of phytoplankton and zooplankton population, respectively, 𝛼(> 0) 

is the specific predation rate and 𝛽(> 0) represents the ratio of biomass consumed by zooplankton for 

its growth. 𝜇(> 0) is the mortality rate of zooplankton, 𝜃(> 0) is the rate of toxin production per 

phytoplankton and 𝛾(> 0) is the half saturation constant. 𝑟 is the growth rate of TPP and 𝐾 is the 

environmental carrying capacity. 

 

 Equation (2) can be used to study the dynamics of ecological system where prey and predator 

interactions are significant. It helps in understanding the limit cycles, stability, and the impact of various 

parameters on the ecosystem. 

 

3. Methodology 

 

3.1 Ordinary Differential Equation (ODE) 

In this part, the minimal mathematical background required to analyze the ODE in the survey. The 

behavior of solutions of the autonomous system is discussed near an isolated critical point (𝑥0, 𝑦0) 

where 𝑓(𝑥0, 𝑦0) = 𝑔(𝑥0, 𝑦0) = 0. 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦) 

 

(3) 

       

 If the neighbourhood point does not has any critical point, the point is called isolated. The function 

of 𝑓 and 𝑔 are assumed as continuously differentiable in (𝑥0, 𝑦0) neighbourhood. Assumption of 𝑥0 =

𝑦0 = 0 is made without loss of generality. Otherwise, substitutions are made for 𝑢 = 𝑥 − 𝑥0, 𝑣 = 𝑦 − 𝑦0. 

Hence, 
𝑑𝑥

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
. The system is equivalent to 

𝑑𝑢

𝑑𝑡
= 𝑓(𝑢 + 𝑥0, 𝑣 + 𝑦0) = 𝑓1(𝑢, 𝑣) 

𝑑𝑣

𝑑𝑡
= 𝑔(𝑢 + 𝑥0, 𝑣 + 𝑦0) = 𝑔1(𝑢, 𝑣) 

(3) 

 

where the isolated critical value is (0,0). 

3.2 Equilibrium Point 

An equilibrium point is a point which the system is stable by examining the eigenvalues. In the context 

of HAB, equilibrium point is important for accessing system stability. Three types of equilibrium points 

are examined in order to identify the stability (1) a trivial equilibrium point (2) an axial equilibrium and 

(3) the interior equilibrium. 

3.3 Stability of Linear Systems 

The eigenvalue-eigenvector method is used to investigate the critical point (0,0) of the linear system 

[
𝑥′

𝑦′] = [
𝑎 𝑏
𝑐 𝑑

] [
𝑥
𝑦]  (4) 
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with the constant-coefficient matrix, 𝐴. The solutions for the characteristic equation are eigenvalues 

𝜆1and 𝜆2. 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = [
𝑎 − 𝜆 𝑏

𝑐 𝑑 − 𝜆
] = (𝑎 − 𝜆)(𝑑 − 𝜆) − 𝑏𝑐 = 0 (5) 

  

 It is assumed that system’s (5) isolated critical point is (0,0). It implies that the determinant 

coefficient is nonzero for 𝑎𝑑 − 𝑏𝑐 of the system 𝑎𝑥 + 𝑏𝑦 = 0, 𝑐𝑥 + 𝑑𝑦 = 0. Therefore, 𝜆 = 0 is not a 

solution of the system (4), and both eigenvalues of matrix 𝐴 are nonzero. Table 1 below shows the type 

of critical point based on eigenvalues. Meanwhile, Theorem 1 is applied to examine the stability of 

equilibrium points.  

Table 1: Type of critical point 

Eigenvalues of 𝑨 Type of Critical Point 

Real, unequal, same sign Improper node 

Real, unequal, opposite sign Saddle point 

Real and equal Proper or improper node 

Complex conjugate Spiral point 

Pure imaginary Center 

 

Theorem 1. Let 𝜆1 and 𝜆2 be the eigenvalues of the system of the coefficient matrix 𝐴 of the two-

dimensional linear system [17] 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦 

(6) 

with 𝑎𝑑 − 𝑏𝑐 ≠ 0. Then, the system of the critical point (0,0) is 

1. Asymptotically stable if the real parts of  𝜆1 and 𝜆2 are both negative. 

2. Stable if the real parts of 𝜆1 and 𝜆2 are both zero. 

3. Unstable if either 𝜆1 or 𝜆2 has positive real part. 

 

4. Results and discussion 

 

4.1. Stability of equilibrium points 

Based on the mathematical model in equation (2), the Jacobian Matrix obtained is 

 

  𝐽 =  

[
 
 
 𝑟 −

2𝑟𝑃

𝐾
− 𝛼𝑍 −𝛼𝑃

𝛽𝑍 −
𝜃𝑍

𝛾 + 𝑃
+

𝑃𝜃𝑍

(𝛾 + 𝑃)2
𝛽𝑃 − 𝜇 −

𝜃𝑃

𝛾 + 𝑃]
 
 
 
   

(7) 

 System (2) has the following nonnegative equilibria, namely a trivial equilibrium 𝐸0(0,0), an axial 

equilibrium 𝐸1(𝐾, 0), and the interior equilibrium 𝐸∗(𝑃∗, 𝑍∗) where 

 

𝑃∗ =
−(𝛽𝛾 − 𝜇 − 𝜃) + √(𝛽𝛾 − 𝜇 − 𝜃)2 + 4𝛽𝜇𝛾

2𝛽
 

 

(8) 
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𝑍∗ =
𝑟

𝛼
(1 −

𝑃∗

𝐾
) (9) 

4.1.1  The Stability of 𝐸0(0,0) 

The Jacobian Matrix around 𝐸0(0,0) is  

 𝐽(𝐸0) = [
𝑟 0
0 −𝜇

] (10) 

and the characteristic equation is computed as follow 

(𝑟 − 𝜆)(−𝜇 − 𝜆) = 0 (11) 

 

Therefore, 

𝜆1 = 𝑟       𝜆2 = −𝜇 

 From Theorem 1, the equilibrium point 𝐸0(0,0) is unstable since one of the eigenvalues obtained 

is positive integer. Hence, the algal bloom will not happen. 

 

4.1.2  The Stability of 𝐸1(𝐾, 0)  

The Jacobian Matrix and the characteristic equation is 

𝐽(𝐸1) = [

−𝑟 −𝛼𝐾

0 𝛽𝐾 − 𝜇 −
𝜃𝐾

𝛾 + 𝐾
] 

(−𝑟 − 𝜆) (𝛽𝐾 − 𝜇 −
𝜃𝐾

𝛾 + 𝐾
− 𝜆) = 0 

(12) 

and the eigenvalues are 

𝜆1 = 𝑟 −
2𝑟

𝐾
       𝜆2 =

𝛽𝐾𝛾 + 𝛽𝐾2 − 𝜇𝛾 − 𝜇𝐾 − 𝜃𝐾

𝛾 + 𝐾
 

Based on Theorem 1, 𝐸1(𝐾, 0) is asymptotically stable if both eigenvalues have negative real 

parts. Therefore, in order for HAB to occur, the second eigenvalue must satisfy the following condition  

  
(𝛽𝐾 − 𝜇)(𝛾 + 𝐾)

𝐾
< 𝜃  

4.1.3  The Stability of 𝐸∗(𝑃∗, 𝑍∗)  

The Jacobian Matrix is 

𝐽(𝐸∗
) = [

𝐶1 −𝛼𝑃∗

𝐶3 𝐶2
] (13) 

where 

𝐶1 = 𝑟 −
2𝑟𝑃∗

𝐾
− 𝛼𝑍∗, 

𝐶2 = 𝛽𝑃∗ − 𝜇 −
𝜃𝑃∗

𝛾 + 𝑃∗
, 

𝐶3 = 𝛽𝑍∗ −
𝜃𝑍∗

𝛾 + 𝑃∗
+

𝑃∗𝜃𝑍∗

(𝛾 + 𝑃∗)2
. 

 The characteristic equation of 𝐸∗  can be written as 

(𝐶1 − 𝜆)(𝐶2 − 𝜆) − (−𝛼𝑃∗)(𝐶3) = 0, 

and the eigenvalues are 

𝜆1 =
1

2
(𝐶1 + 𝐶2 − √𝐶1

2 − 2𝐶1𝐶2 + 𝐶2
2 − 4𝐶3𝑃

∗𝛼) , 
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𝜆2 =
1

2
(𝐶1 + 𝐶2 + √𝐶1

2 − 2𝐶1𝐶2 + 𝐶2
2 − 4𝐶3𝑃

∗𝛼). 

 

 A system is stable if all eigenvalues are negative real parts. Thus, all the eigenvalues must 

satisfy the following conditions 

𝐶1 + 𝐶2 < √𝐶1
2 − 2𝐶1𝐶2 + 𝐶2

2 − 4𝐶3𝑃
∗𝛼, 

−(𝐶1 + 𝐶2) < √𝐶1
2 − 2𝐶1𝐶2 + 𝐶2

2 − 4𝐶3𝑃
∗𝛼. 

 

4.2 Numerical Solution 

In this section, a set of parameter values (see Table 2) from [18] is used to substantiate analytical results 

obtained through numerical simulation.  

 

Table 2: The abbreviations, default values and ranges of the parameters 

Parameters Symbols Default values Reported Ranges 

Growth rate of phytoplankton population 𝑟 0.0083 (hr−1) 0.00292-0.0117 

(hr−1) 

Environmental carrying capacity 𝐾 1.667 (g C m−3) - 

Grazing efficiency of zooplankton population 𝛼 0.0375 

(m3g−1C−1hr−1)  

0.025-0.0583 

(m3g−1C−1hr−1)  
Growth efficiency of zooplankton population 𝛽 0.0125 

(m3g−1C−1hr−1)  

0.0083-0.0208 

(m3g−1C−1hr−1)  
Higher predation on Z or natural death rate 𝜇 0.00083 (hr−1)  0.000625-0.00625 

(hr−1)  
Zooplankton grazing half saturation 

coefficient 

𝛾 0.0025 (g C m−3) 0.00083-0.00417 

(g C m−3) 

Toxin production rate 𝜃 0.167 (hr−1) - 

 

4.2.1 Phase Portrait of Phytoplankton-Zooplankton 

Based on the phase portrait in Figure 1, the trajectory of the population of phytoplankton and 

zooplankton are decreases rapidly. The curve is then converging to 0 indicating that 𝐸1(𝐾, 0) has 

reached a stable equilibrium point. 

 
Figure 1  Phase Portrait of Phytoplankton Zooplankton 
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4.2.2  Phytoplankton-Zooplankton Model 

Figure 2 shows the population changes of phytoplankton and zooplankton over time. The phytoplankton 

population increases due to favorable conditions but then drops to 0.8543 as resources get depleted. 

This decrease reduces predation pressure, allowing the phytoplankton to recover. Meanwhile, the 

zooplankton population declines over time, likely because of toxins released by the TPP that harm them. 

 

Figure 2  Phytoplankton-Zooplankton Population 

4.2.3 Effect of Environmental Carrying Capacity 

Figure 3 shows the stability between phytoplankton (𝑃) and environmental carrying capacity (𝐾). A 

bifurcation occurs at the branching point (BP), where the system initially exhibits stable as it approaches 

𝐾 =13.4239. However, beyond this point, the system changes from stable to a neutral saddle 

equilibrium (H) resulting instability at 𝐾 =14.088. In this unstable region, no bifurcation occur until the 

end of the curve. 

 

Figure 3  Effect of Environmental Carrying Capacity 
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Conclusion 

From the results, it can be seen that  the existence of toxin phytoplankton harm the population of 

zooplankton over time until it becomes 0. Meanwhile, the phytoplankton population drops only at the 

beginning, which decrease to 0.8543 as it starts to deplete the available resources. Moreover, it is 

evident that a bifurcation occurs when studying the stability between phytoplankton (𝑃) and 

environmental carrying capacity (𝐾) which at point 𝐾 =13.4239. This situation is referred as Harmful 

Algal Blooms (HABs). From the modelling above, it gives better understanding about the occurrence of 

HABs event. 
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