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Abstract 

This study addresses the critical issue of declining groundwater levels exacerbated by unsustainable 

abstraction practices during dry spells. It proposes a robust model using Geometric Brownian Motion 

(GBM), a stochastic differential equation adept at capturing the random and continuous nature of 

groundwater dynamics. The objectives focus on determining an appropriate model for predicting 

groundwater fluctuations in Malaysia and evaluating its accuracy using Root Mean Square Error 

(RMSE). By estimating model parameters like drift and volatility from groundwater data, the study 

demonstrates the model's efficacy in accurately forecasting future groundwater levels. 

Methodologically, it employs the Augmented Dickey-Fuller (ADF) test for stationarity, normality tests, 

and Maximum Likelihood Estimation for parameter estimation, alongside the Kolmogorov-Smirnov test 

for distribution fitting. Statistical software analysis validates the GBM model against traditional methods, 

showing strong predictive accuracy with Mean Absolute Percentage Errors (MAPE) of 5.91% for the 

Terengganu dataset and 0.15% for the Machap Dam dataset. This research highlights GBM's potential 

as a reliable tool not only for forecasting price fluctuations but also for managing groundwater dynamics 

characterized by high volatility. The results provide valuable insights for managers to use the 

information for managing groundwater management practices. 

Keywords: Groundwater Level; Stochastic Differential Equation; Geometric Brownian Motion; 

Forecasting; MAPE. 

 

Introduction 

Groundwater, as a vital component of the hydrological cycle, refers to the water stored beneath the 

Earth's surface within porous rock formations called aquifers. It represents a critical source of freshwater 

globally, particularly in regions where surface water availability is limited. Groundwater originates from 

precipitation that percolates into the ground, eventually accumulating within underground reservoirs. 

This natural resource sustains various essential functions, including supporting ecosystems, supplying 

drinking water for communities, irrigating agricultural lands, and facilitating industrial processes. The 

dynamic nature of groundwater is characterized by its ability to be recharged during periods of rainfall. 

 This study addresses the pressing challenges of potable water supply in major Malaysian cities 

exacerbated by population growth, industrialization, surface water pollution, and recurring droughts. 

Particularly in Selangor, Kuala Lumpur, Johor Bahru, and Pulau Pinang, the demand for clean water is 

acute [1]. Groundwater has emerged as a crucial resource during dry spells, offering a vital alternative 

in regions like Melaka, Selangor, and Sarawak [3]. Groundwater, a critical freshwater source for global 

populations, is utilized for domestic, agricultural, and industrial purposes, especially vital in arid and 

semi-arid regions where surface water is scarce [4]. Recent studies highlight a concerning decline in 

groundwater levels due to unsustainable extraction practices, akin to issues faced in Malaysia and other 

Asian countries. This research aims to assess water resources comprehensively through mathematical 

modeling to develop an accurate stochastic groundwater prediction model, crucial for sustainable water 

management strategies. 
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Literature Review 

Groundwater Level Fluctuations 

Groundwater fluctuations, a critical component of hydrological systems, vary significantly across 

different regions due to complex interactions of climate, geology, and human activities. Studies like [6] 

highlight the impact of declining groundwater levels, particularly due to limited recharge and extensive 

pumping, on agricultural sustainability, exemplified by the Ogallala Aquifer. [7] discuss similar 

challenges in arid regions, emphasizing over-pumping and low recharge rates as causes of 

groundwater depletion. In Malaysia, despite a tropical climate with substantial rainfall, changing climatic 

conditions have led to irregular precipitation patterns, affecting water resources and agricultural 

sustainability [10]. 

 

Review on Groundwater Fluctuations Forecasting Research  

By reviewing the literature of groundwater level forecasting, it can be observed that researchers 

commonly addressed through artificial intelligence (AI) models, particularly machine learning 

techniques such as Support Vector Machines, Random Forests, and Gradient Boosting, alongside 

traditional methods like Autoregressive Integrated Moving Average (ARIMA). Researchers, such as [2] 

and [19] , have applied these models to predict groundwater levels based on factors like rainfall and 

evapotranspiration. However, the use of stochastic differential equation (SDE) models, common in 

financial forecasting, has been scarcely explored in groundwater prediction research despite its 

potential to offer novel insights and potentially enhance prediction accuracy. [5] demonstrated the 

applicability of geometric Brownian motion for short-term stock price forecasting, suggesting an 

opportunity for further exploration of stochastic models in hydrological forecasting, which could 

significantly advance the field of groundwater fluctuation prediction.  

 

Stochastic Differential Equation  

A stochastic differential equation (SDE) is a differential equation containing one or multiple stochastic 

components that can be used to derive a solution [11]. SDE are usually selected to model systems with 

large random components, applicable across diverse fields including quantitative finance, meteorology, 

and hydrology [12]. [13] extensively reviewed the use of SDEs in hydrology, highlighting fundamental 

concepts such as Markov processes and Ito's calculus. This approach involves selecting suitable model 

structures, parameter estimation, and predictive modeling, offering a robust framework for enhancing 

accuracy in groundwater level forecasting. By leveraging SDEs for short-term prediction of groundwater 

fluctuations, this research aims to build upon existing hydrological forecasting methodologies and 

contribute to advancing predictive capabilities in water resource management. 

 

Review on Groundwater Forecasting Using SDE 

Stochastic differential equation is widely used to describe processes in seismology/seismic, 

groundwater, thermal, etc. Groundwater modeling for flow equations and forecasting water level heights 

assume the controlling physical parameters such as hydraulic conductivity, sources such as recharge 

and boundary conditions subject to a degree of error and uncertainty due to inaccurate measurements 

or inherent uncertainty in the parameter. Stochastic modeling helps in evaluating objectively the 

accuracy of groundwater predictions [16]. 

 

Methodology 

 

Description of Data 

In this study, the data that was used is the monthly water table depth data extracted from Musa G. 

Abdullahi's paper which was published in the Journal of Remote Sensing & GIS in April 2015. The range 

of the data are from January 2001 until December 2012. 
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Kruskal-Wallis Test 

The Kruskal–Wallis test is a statistical test used to compare two or more groups for a continuous or 

discrete variable. It is a non-parametric test, meaning that it assumes no particular distribution of your 

data and is analogous to the one-way analysis of variance (ANOVA). In the Kruskal-Wallis test, the test 

variable H is calculated. The H value corresponds to the χ2 value. 

 

Augmented Dickey-Fuller Test  

It is commonly employed to determine whether a time series is stationary or non-stationary. This test is 

particularly useful in detecting trends in time series data. 

Hypothesis: 

𝐻0: The time series has a unit root, indicating it is non-stationary. 

𝐻1: The time series does not have a unit root, indicating it is stationary. 

If the test statistic is less than the critical values, the null hypothesis is rejected, suggesting that the time 

series is stationary.  

 

Groundwater Level Log Return 

The formula of logarithm return for water level depth is defined as following:    

 

 
𝐷𝑡 = ln (

𝑊𝑡

𝑊𝑡−1

) 

 

 
 (1) 

where: 

𝐷𝑡: Water level logarithm return at time 𝑡 

𝑊𝑡: Water level at time 𝑡 

𝑊𝑡−1: Water level at time 𝑡-1 

 

Normality test 

The Anderson-Darling test is used to test normally or not normal distributed data. 

𝐻0: The data follows the normal distribution 

𝐻1: The data do not follow the normal distribution 

 

Statistical test: 
 

𝐴𝐷 = −𝑛 −
1

𝑛
∑(2𝑖 − 1)[ln 𝐹(𝐷𝑡) + ln(1 − 𝐹(𝐷𝑛−𝑖+1)]

𝑛

𝑖=1

 

 

 
 (2) 

where: 
𝑛: sample size 
𝑖: ith sample when the data is sorted in ascending order 

𝐹(𝑥): cumulative distribution function for the specified distribution 

 

Maximum Likelihood Estimation 

The computation of the parameters was carried out using Microsoft Excel. We computed monthly 

groundwater level returns from January, 2001 to December, 2012, and we adopted the same relation 

used in (Iversen et al., 2016) which is given as 

𝐷𝑖 =
𝐺𝑡 − 𝐺𝑡−1

𝐺𝑡−1

 
 
  (3) 
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where 𝐷𝑡 denotes the water level returns at time t, 𝑊𝑡 and 𝑊𝑡−1 a represent water level at time, t and 

time 𝑡 − 1 respectively. Using Equation (3), we computed the value of the drift (𝜇) using Equation (4) 

which gives as 

 
𝜇 =

∑ (𝐷𝑡)60
𝑡=2

59
 

 
 (4) 

 

where 𝜇 is the drift, 𝐷𝑡 as defined above, 𝑛 is the number of groundwater level returns. However, with 

known value of drift, we need to compute the volatility value with the formula in Equation (5) 

 

 
𝜎𝑑

2 = ∑
(𝐷𝑡 − 𝐷̅)2

𝑛 − 1

𝑛

𝑡=2

 
 
 (5) 

 

where 𝜎𝑑
2denotes volatility and 𝐷̅ a represents the groundwater level return. 

 

Geometric Brownian Motion 

Geometric Brownian motion (GBM) is a fundamental stochastic process used to describe commodity 

price changes. In this research, this method is used to describe the changes in groundwater levels as 

a random walk with a drift and volatility component, reflecting the exponential nature of groundwater 

fluctuations. The GBM equation for forecasting the groundwater level at time t can be expressed as: 

 
𝐺𝑡 = 𝐺0𝑒(𝜇−

𝟏
𝟐

𝝈𝟐)𝒕 + 𝝈𝑤𝑖 
 
 (6) 

 

where: 

𝐺𝑡 : actual groundwater level at time 𝑡  

𝐺𝑡−1 : forecast groundwater level at time 𝑡 − 1   

𝜇 : drift value 

𝜎 : volatility value 

 

Mean Absolute Percentage Error (MAPE) 

The model's effectiveness is assessed using the Mean Absolute Percentage Error (MAPE) metric, 

comparing the actual groundwater levels with the predicted ones. Equation of MAPE as follows: 

 
𝑀𝐴𝑃𝐸 =

1

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖

|   𝘹 100%

𝑚

𝑖=1

 

 

 
 (7) 

where: 

𝐴𝑖 : actual groundwater level at time 𝑖  

𝐹𝑖 : forecast groundwater level at time 𝑖   

𝑁 : number of simulations 
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Results and discussion 

Data Collection 

The historical monthly water table depth data was extracted from Musa G. Abdullahi's paper which was 

published in the Journal of Remote Sensing & GIS in April 2015. Exploring and investigating the 

appropriate model and predicting groundwater level fluctuations in Malaysia using the stochastic 

differential equation is the main aim of this research. 

Kruskal-Wallis Test 

The output for Kruskal-Wallis test by using Minitab shows a smaller p-value indicating the existence of 

seasonality as there is enough evidence that the medians for the months data are not the same at the 

chosen significance level at 0.05. 

 

Augmented Dickey-Fuller Test  

 

          

               Figure 1 Output For Augmented Dickey-Fuller Test                                                                      

 

The data is non stationary at the significance level of 0.05. Based on this result, the stochastic 

differential equations approach is considered in this research study for the groundwater level 

fluctuations prediction. Stochastic differential equations are able to capture the random and continuous 

nature of the underlying processes, making them suitable for modeling complex and non-stationary time 

series data. This might enhance the model's ability to handle the specific characteristics of the dataset 

and improve forecasting accuracy. 

 

Normality test 

At this stage, a test of normality is performed from January 2001 to December 2012, which has been 

obtained from the previous stage. A normality test is performed to determine whether the logarithm 

return of water level is normally distributed or not. Here is the step to test the normality of water level 

logarithm returns. 

𝐴𝐷 = −143 −
1

143
∑(2𝑖 − 1)[𝑙𝑛𝐹(𝐷𝑡) + 𝑙𝑛(1 − 𝐹(𝐷𝑛−𝑖+1)]

𝑛

𝑖=1

 

                        = 0.3262 
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𝐴𝐷∗ = 𝐴𝐷(1 +
0.75

59
+

2.25

592
) 

                        = 0.3279 

The value of p-value = 0.531 > 0.05, fail to reject 𝐻0 , then we can conclude that the logarithm return 

of water level data is normally distributed. Histogram of logarithm return is present in the Figure 3: 

 

 

Figure 3 Histogram of Water Level Return    

 

Calculation of Log Return 

 

𝐷2 = 𝑙𝑛(
𝑊2

𝑊1

) = 𝑙𝑛(
12.68

13.31
) =  −0.048816 

𝐷144 = 𝑙𝑛(
𝑊144

𝑊143

) = 𝑙𝑛(
12.79

15.02
) =  −0.160379 

 

Figure 4 Logarithm Return of Water Level versus Time 

 

Parameter Estimation 

The estimate of volatility parameters and drift using maximum likelihood estimation is done at this step. 

The values of the drift and volatility parameters are constant, and this is the value that had been used 

to forecast groundwater level in the future. Calculating the average log discharge and standard deviation 

of log discharge is the first step in determining the value of volatility. By using the results of the water 
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level log discharge computation in the preceding calculation, the calculation of average log discharge, 

 𝜇 using equation (4) are presented below: 

 𝜇 =
∑ (𝐷𝑡)60

𝑡=2

59
       (8) 

=
𝐷2 + 𝐷3 + 𝐷4+. . . +𝐷143 + 𝐷144

143
 

 

=
 −0.048816 + 0.109265 + 0.057795+ . . . +0.042387 + (−0.160379)

143
 

=  −0.000278 

After the calculation of logarithm return has been done, the standard deviation of logarithm return needs 

to be calculated. By using equation (5), the calculation of standard deviation of logarithm return have 

been done and presented as below: 

𝜎𝑑
2 = ∑

(𝐷𝑡−𝐷)2

𝑛−1

𝑛
𝑡=2      (9) 

=
(−0.048816 − (−0.000278))2 + (0.109265 − (−0.000278))2+ . . . +(0.042387 − (−0.000278))2

142
 

      = 0.004261 

𝜎𝑑 = 0.065277 

Then, the value of 𝜇̂ and 𝜎̂ are as shown below: 

𝜇̂ = −0.000278 

𝜎̂ = 0.065277 

After the calculation, the RMSE value is 0.96, it can be concluded that this gives a better estimate of 

the data. 

Data Prediction 

Forecasting groundwater level using geometric Brownian motion (GBM) encompasses utilizing the 

stochastic process to estimate future groundwater level fluctuations based on historical data with the 

assumption that the fluctuation returns follow a normal distribution. We can compute the volatility ( 𝜎⬚
⬚) 

and the drift coefficient (𝜇) from the data using Equation (4) and (5). The obtained parameter values are 

then substituted into Equation (6), with the initial water table depth set as G(0). Future water table depth 

is simulated using the calculated drift and volatility. This involves generating random numbers from a 

standard normal distribution to serve as the random part of the equation, the random numbers are then 

multiplied by the square root of the time increment (𝑑𝑡) and the volatility to simulate the random 

increment (𝑑𝑤𝑖).  

𝐺𝑡 = 𝐺𝑡−1𝑒(𝜇̂−
𝟏
𝟐

𝝈̂𝟐)𝒅𝒕 + 𝝈̂𝜺√𝑑𝑡
 

𝐺1 = 𝐺0𝑒(−0.000278−
𝟏
𝟐

(0.065277)𝟐)𝒅𝒕 + 0.065277𝜀√𝑑𝑡
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𝐺1 = 13.38 

. 

𝐺144 = 𝐺143𝑒(−0.000278−
𝟏
𝟐

(0.065277)𝟐)𝒅𝒕 + 0.065277𝜀√𝑑𝑡
 

 

         

 

Figure 5 Graph of the actual and predicted               Figure 6 Graph of predicted water table depth  

water table depth          from January 2013 to December 2013 

 

Figure 5 shows a comparison of the predicted groundwater level and the actual groundwater level. This 

shows how well the model can capture the trend in the data. We further deployed the model to predict 

the groundwater level fluctuations for an additional twelve (12) months, ranging from January 2013 to 

December 2013. The predicted values for 12 months were shown in Table 1, while Figure 6 shows the 

graph of the predicted water table depth until December 2013. 

 

Table 1: The Predicted Water Table Depth for 12 Months 

Month Predicted Value Month Predicted Value 

January, 2013 13.22 July, 2013 13.95 

February, 2013 13.19 August, 2013 13.68 

March, 2013 13.91 September, 2013 13.76 

April, 2013 13.88 October, 2013 13.78 

May, 2013 13.74 November, 2013 14.31 

June, 2013 13.82 December, 2013 14.43 
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Data Prediction 

After the results of groundwater level predictions, the Mean Absolute Percentage Error (MAPE) value 

prediction is counted at a later stage using Equation (7) to determine the geometric Brownian motion 

model’s level of accuracy in forecasting groundwater levels.  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖

| 

𝑚

𝑖=1

𝘹 100% =
1

12
(0.709291) 𝘹 100% = 5.91% 

The MAPE value of the predicting portion in GBM is satisfying since it is 5.91%, which is extremely 

accurate according to the table of accuracy. 

 

Data Analysis of Groundwater Level Data, Machap Dam 

This research utilized an additional dataset which is the hourly groundwater level data from Machap 

Dam, spanning January 2017 to December 2021, sourced from the Department of Irrigation and 

Drainage Malaysia. Daily groundwater level abstraction was analyzed and visualized using R software. 

 

    

Figure 7 Time Series Plot for GWL Data, Machap  Figure 8 Seasonal Decomposition Plot          

   Dam                                                                   

The seasonal decomposition plot, particularly the middle panel representing the seasonal component, 

shows minimal variation or pattern, indicating no distinct recurring cycles or trends across different 

months or periods. Additionally, the Kruskal-Wallis test's non-significant p-value reinforces the 

conclusion that there are no systematic differences or seasonal effects observed in groundwater levels 

over time. This implies that the groundwater levels at Machap Dam do not exhibit seasonal variations 

that would require specific seasonal adjustments or considerations in analysis and management. 

Parameter Estimation 

Then, the value of 𝜇̂ and 𝜎̂ are as shown below: 

𝜇̂ = −0.000015 

𝜎̂ = 0.003852 

Thus, the equation become 

𝐺𝑡 = 𝐺𝑡−1𝑒(−0.000015−
𝟏
𝟐

(0.003852)𝟐)𝒅𝒕 + 0.003852𝜀√𝑑𝑡
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The simulated data for the first 10 periods is shown in Table 2. After the calculation, the RMSE value is 

0.34, it can be concluded that this gives a better estimate of the data.  

 

Data Prediction 

Table 2: Predicted GWL Data for the First 10 Period 

Period Predicted Value Period Predicted Value 

1 16.24 6 16.36 

2 16.24 7 16.38 

3 16.24 8 16.35 

4 16.30 9 16.38 

5 16.34 10 16.34 

 

Figure 9 below also shows the plot for actual and predicted water table depth while Figure 10 shows 

the graph of forecasted water table depth from January 2013 to December 2013. 

             

Figure 9 Graph of the actual and predicted                Figure 10 Graph of predicted water table depth 

                water table depth               from January 2013 to December 2013

   

After the results of groundwater level predictions, the Mean Absolute Percentage Error (MAPE) value 

prediction is counted at a later stage using Equation (7) to determine the GBM model’s level of accuracy 

in forecasting groundwater levels for this dataset. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖

| 

𝑚

𝑖=1

𝘹 100% =
1

30
(0.047911) 𝘹 100% = 0.15% 

The MAPE value of the predicting portion in this model is satisfying since it is 0.15%, which is extremely 

accurate according to the table of accuracy.  

Conclusion 

In conclusion, this study used the Geometric Brownian Motion (GBM) model to forecast groundwater 

level fluctuations in two datasets: Terengganu, with significant seasonality, and Machap Dam, with 

stationary behavior. The model's performance was evaluated using Mean Absolute Percentage Error 

(MAPE), showing high predictive accuracy. For Terengganu, the GBM model achieved a MAPE of 
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5.91%, effectively forecasting future levels despite seasonal variability. For Machap Dam, the MAPE 

was 0.15%, demonstrating the model's robustness in stable conditions. These results highlight the GBM 

model's reliability in diverse groundwater dynamics, providing valuable insights for water resource 

management and supporting sustainable environmental practices. 
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