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Abstract 

An MDS (maximum distance separable) matrix is a square matrix where all its submatrices are non-

singular. The MDS matrices are used in some cryptographic systems' encryption and decryption 

processes. The decryption process involves using the inverse matrix from encryption, so choosing 

matrices with easily computable inverses is efficient. Orthogonal and involutory matrices are particularly 

advantageous in this regard. On the other hand, circulant matrices are more storage-efficient compared 

to general square matrices. Recent research highlights include Cauchois and Loidreau's 2019 proof 

that there is no involutory circulant MDS matrix of order 2𝑚 for 𝑚 ≥ 2 over a field with characteristics 

𝑝 ≥ 2, and Adhiguna et al.'s 2022 finding that there is no orthogonal circulant MDS matrix of even order 

and order divisible by 𝑝 > 2 over fields with characteristic 𝑝. Current research explores the existence of 

MDS matrices over the ring ℛ2,𝑞, defined as 𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣2𝔽𝑞 where 𝑣3 = 𝑣 and 𝑞 is a power of a prime 

𝑝. This paper shows that there is no involutory circulant MDS matrix and no orthogonal circulant MDS 

matrix of certain order over ℛ2,𝑞.  
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Introduction 

In today's digital age, advancements in technology continue to grow, greatly enhancing human 

convenience. Specifically within information and communication technology, numerous activities are 

now conducted through digital platforms like mobile phones and email. As these technologies evolve, 

ensuring secure communication is paramount to safeguarding messages from unauthorized access. 

Cryptographic systems serve as a crucial solution in ensuring the confidentiality and integrity of digital 

data. 

 Block ciphers, a form of cryptography widely used in digital data communication, consist of two 

main algorithms: encryption and decryption. The encryption algorithm converts the original messages 

(plaintext) into codes (ciphertext) before they are transmitted, while the decryption algorithm converts 

ciphertext to the plaintext before the messages are received.  

 In the design of block ciphers, Shannon introduced the concepts of confusion and diffusion [8]. 

Diffusion is achieved by a component of the algorithm known as the diffusion layer, while the confusion 

layer handles the algorithm's confusion process. The diffusion layer's role is to obscure the relationship 

between ciphertext and plaintext through linear mappings represented by matrices, which significantly 

influence its diffusion capability. The effectiveness of a matrix in the diffusion layer is measured by its 

branch number, with matrices possessing a large branch number being highly desirable. MDS 

(maximum distance separable) matrices, known for their maximum branch number, are commonly used 

in diffusion layers of many ciphers. 
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An MDS matrix is needed for more efficient computation, as it provides low complexity or 

minimizes memory in the encryption and decryption processes.  On the other hand, an 𝑛 × 𝑛 circulant 

matrix  has at most 𝑛 different components. A circulant matrix is a matrix whose rows can be obtained 

from cyclic permutations of the first row. Thus, a circulant matrix is very profitable in terms of storage 

memory. In 1997, Daemen et al. found that the probability of finding a circulant MDS matrix is greater 

than a random square matrix [4]. The decryption process involves using the inverse of the MDS matrix 

used in the encryption process. Choosing an MDS matrix for which finding the inverse is straightforward 

is more efficient; examples include involutory MDS or orthogonal MDS matrices. An involutory matrix is 

one where its inverse is the matrix itself, while an orthogonal matrix has an inverse that is its transpose. 

Therefore, if a cryptosystem utilizes an orthogonal MDS or involutory MDS matrix, the decryption 

process uses either the matrix itself or its transpose, resulting in reduced memory complexity. An 

alternative for achieving low complexity is to utilize an involutory circulant MDS matrix or an orthogonal 

circulant MDS matrix. 

 Previous studies have demonstrated the existence of such circulant MDS matrices in fields with 

specific characteristics and at certain matrix sizes. Gupta and Ray (2015) [5] established that there is 

no 2𝑛 × 2𝑛 orthogonal circulant MDS matrix over fields with characteristic 2, and they also proved the 

absence of 𝑛 × 𝑛 involutory circulant MDS matrix with 𝑛 ≥ 3  in such fields. Additionally, Cauchois and 

Loidreau (2019) [3] demonstrated that no 2𝑛 × 2𝑛 involutory circulant MDS matrices exist over fields 

with prime characteristic 𝑝 ≥ 3 for 𝑛 ≥ 2. Furthermore, Adhiguna et al. (2022) [1] proved the non-

existence of orthogonal circulant MDS matrices of even order and order divisible by a prime 𝑝 > 2 over 

fields with characteristic 𝑝. This research investigates the presence of orthogonal and involutory 

circulant MDS matrices over the finite ring ℛ2,𝑞, defined as 𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣2𝔽𝑞 where 𝑣3 = 𝑣 and 𝑞 is a 

power of prime number 𝑝. 

 

MDS Matrices over Rings 

Let 𝑅 denotes a commutative ring with identity 𝑒, and 𝑅𝑛 denotes the set of 𝑛-tuples of elements from 

𝑅, which forms an 𝑅-module. A subset 𝒞 of 𝑅𝑛 is a linear code over 𝑅 of length 𝑛 if 𝒞 is an 𝑅-

submodule. If the code 𝒞 is a linear code with length 𝑛 and dimension 𝑘, then 𝒞 is a linear code with 

parameter [𝑛, 𝑘]. The elements in the linear code 𝒞 are called codewords.  

 Let 𝑐̅ = (𝑐1, 𝑐2, … , 𝑐𝑛) ∈ 𝒞 be a codeword. The Hamming weight 𝑤𝑡(𝑐̅) is the number of non-zero 

components of the code 𝑐̅. For an element 𝑥 ∈ 𝑅, the Hamming wight 𝑤𝑡(𝑥) is defined as 

𝑤𝑡(𝑥) = {
1,    𝑖𝑓 𝑥 ≠ 0
0,    𝑖𝑓 𝑥 = 0.

 

 The Hamming distance of �̅� = (𝑥1, 𝑥2, … , 𝑥𝑛) and �̅� = (𝑦1, 𝑦2, … , 𝑦𝑛) in 𝒞, denoted as 𝑑(�̅�, �̅�), is 

the number of distinct components between codewords �̅� and �̅�. In other words, the Hamming 

distance 𝑑(�̅�, �̅�) is the Hamming weight of (�̅� − �̅�). 

 The Hamming distance function satisfies the properties of the metric space as follows. 

1. 𝑑(�̅�, �̅�) ≥ 0 for every �̅�, �̅� ∈ 𝑅𝑛. 

2. 𝑑(�̅�, �̅�) = 0 if and only if �̅� = �̅�. 

3. 𝑑(�̅�, �̅�) = 𝑑(𝑦, �̅�) ≥ 0 for each �̅�, �̅� ∈ 𝑅𝑛. 

4. 𝑑(�̅�, 𝑧̅) ≤ 𝑑(�̅�, �̅�) + 𝑑(�̅�, 𝑧)̅ for each �̅�, �̅�, 𝑧̅ ∈ 𝑅𝑛. 

 For an arbitrary linear code 𝒞, the Hamming distance of 𝒞, denoted as 𝑑(𝒞) or 𝑑, is the smallest 

Hamming distance between any two non-zero codewords in 𝒞:  

𝑑 = min{𝑑(�̅�, �̅�)|𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 �̅�, �̅� ∈ 𝒞}. 

 The Hamming distance 𝑑 can be considered as the smallest Hamming weight of the non-zero 

codewords in 𝒞: 

𝑑 = min{𝑤𝑡(𝑐̅)|𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐̅ ∈ 𝒞}. 

 Linear code 𝒞 is called an [𝑛, 𝑘, 𝑑] linear code if it has length 𝑛, dimension 𝑘 and a Hamming 

distance 𝑑. The relationship between 𝑛, 𝑘 and 𝑑 is given in the following theorem. 

 

Theorem 1 [7] 

If 𝒞 is an [𝑛, 𝑘, 𝑑] linear code then 𝑑 ≤ 𝑛 − 𝑘 + 1. 
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Definition 1 [7] 

An [𝑛, 𝑘, 𝑑] linear code is called an MDS (maximum distance separable) code if it satisfies  

𝑑 = 𝑛 − 𝑘 + 1. 

 

 The generator matrix of an [𝑛, 𝑘, 𝑑] linear code 𝒞 is a matrix 𝐺 where its rows form a basis of 𝒞. 

It has size 𝑘 × 𝑛. By performing elementary row operations, the matrix 𝐺 can be written in standard 

form, that is 

𝐺 = [𝐼𝑘|𝑀𝑘×(𝑛−𝑘)]. 

where 𝐼𝑘 is the identity matrix of size 𝑘 × 𝑘 and 𝑀 is a 𝑘 × (𝑛 − 𝑘) matrix. An MDS code can be 

characterized by its generator matrix. 

 

Theorem 2 [7] 

An [𝑛, 𝑘, 𝑑] linear code 𝒞 with generator matrix 𝐺 = [𝐼𝑘|𝑀] is an MDS code if and only if every square 

submatrix of 𝑀 is non-singular. 

 

In other words, Theorem 2 gives information that the matrix 𝑀 is an MDS matrix if and only if the code 

𝒞 is an MDS code.  

 Next, we will provide the definitions of the matrices central to this study: circulant matrix, 

orthogonal matrix and involutory matrix. 

 

Definition 2 [3] 

Let 𝑅 denotes a commutative ring and 𝐴 be an 𝑛 × 𝑛 matrix over 𝑅.  

1. Matrix 𝐴 is called a/an circulant matrix if it can be expressed as 

𝐴 = 𝑐𝑖𝑟𝑐(�̅�) = 𝑐𝑖𝑟𝑐(𝑎0, 𝑎1, … , 𝑎𝑛−1) = [

𝑎0 𝑎1 … 𝑎𝑛−1

𝑎𝑛−1 𝑎0 … 𝑎𝑛−2

⋮ ⋮ ⋱ ⋮
𝑎1 𝑎2 … 𝑎0

] 

where 𝑎0, 𝑎1, … , 𝑎𝑛−1 ∈ 𝑅. 

2. Matrix 𝐴 is called a/an orthogonal matrix if 𝐴𝐴𝑇 = 𝐼𝑛. 

3. Matrix 𝐴 is called a/an involutory matrix if 𝐴2 = 𝐼𝑛. 

where 𝐼𝑛 is the identity matrix of size 𝑛 × 𝑛. 

 

The Ring 𝓡𝟐,𝒒 

Let 𝑝 ≥ 2 be a prime number, 𝑞 = 𝑝𝑟 for some positif integer 𝑟 and 𝔽𝑞 be the finite field with 𝑞 

elements. The ring ℛ2,𝑞 is defined by 𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣2𝔽𝑞 ≔ {𝑎 + 𝑣𝑏 + 𝑣2𝑐|𝑎, 𝑏, 𝑐 ∈ 𝔽𝑞 with 𝑣2 = 𝑣}. It is 

isomorphic to the polynomial ring 
𝔽𝑞[𝑣]

<𝑣3−𝑣>
. The unit elements in the ring ℛ2,𝑞 are described in the 

following lemma. 

 

Lemma 1 

Any element 𝑎 + 𝑣𝑏 + 𝑣2𝑐 ∈ ℛ2,𝑞 is a unit if and only if 𝑎, 𝑎 + 𝑏 + 𝑐 and 𝑎 − 𝑏 + 𝑐 are units in 𝔽𝑞. 

 

Proof.  

(⟹) Let 𝑎 + 𝑣𝑏 + 𝑣2𝑐 ∈ ℛ2,𝑞 be a unit. Then there is an element 𝑥 + 𝑣𝑦 + 𝑣2𝑧 ∈ ℛ2,𝑞 such that  

(𝑎 + 𝑣𝑏 + 𝑣2𝑐)(𝑥 + 𝑣𝑦 + 𝑣2𝑧) = 1. Note that 

(𝑎 + 𝑣𝑏 + 𝑣2𝑐)(𝑥 + 𝑣𝑦 + 𝑣2𝑧) = 1 

                               ⇔ 𝑎𝑥 + 𝑣(𝑏𝑥 + 𝑎𝑦 + 𝑐𝑦 + 𝑏𝑧) + 𝑣2(𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 + 𝑐𝑧) = 1 

                               ⇔ 𝑎𝑥 = 1, 𝑏𝑥 + 𝑎𝑦 + 𝑐𝑦 + 𝑏𝑧 = 0, and 𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 + 𝑐𝑧 = 0 

                                                               ⇔ 𝑎𝑥 = 1, 𝑎𝑥 + ( 𝑏𝑥 + 𝑎𝑦 + 𝑐𝑦 + 𝑏𝑧) + (𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 + 𝑐𝑧) = 1 

                           and 𝑎𝑥 − ( 𝑏𝑥 + 𝑎𝑦 + 𝑐𝑦 + 𝑏𝑧) + (𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 + 𝑐𝑧) = 1 
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                                                               ⇔ 𝑎𝑥 = 1, (𝑎 + 𝑏 + 𝑐)(𝑥 + 𝑦 + 𝑧) = 1, (𝑎 − 𝑏 + 𝑐)(𝑥 − 𝑦 + 𝑧) = 1 

                               ⇔ 𝑎, ( 𝑎 + 𝑏 + 𝑐) and (𝑎 − 𝑏 + 𝑐) are units in 𝔽𝑞. 

(⟸) Let 𝑎 + 𝑣𝑏 + 𝑣2𝑐 ∈ ℛ2,𝑞 such that 𝑎, ( 𝑎 + 𝑏 + 𝑐) and (𝑎 − 𝑏 + 𝑐) are units in 𝔽𝑞. Then there are 

𝑥, 𝑠 and 𝑡 in 𝔽𝑞 such that 𝑎𝑥 = 1, (𝑎 + 𝑏 + 𝑐)(2𝑠) = 1 and (𝑎 − 𝑏 + 𝑐)(2𝑡) = 1. Write 𝑦 = 𝑠 − 𝑡 and  

𝑧 = 𝑠 + 𝑡 − 𝑥, then 

(𝑎 + 𝑣𝑏 + 𝑣2𝑐)( 𝑥 + 𝑣𝑦 + 𝑣2𝑧) = 𝑎𝑥 + 𝑣[𝑏𝑥 + 𝑎𝑦 + 𝑐𝑦 + 𝑏𝑧] + 𝑣2[𝑐𝑥 + 𝑏𝑦 + 𝑎𝑧 + 𝑐𝑧] 

= 𝑎𝑥 + 𝑣[(𝑎 + 𝑐)𝑦 + 𝑏(𝑥 + 𝑧)] + 𝑣2[(𝑎 + 𝑐)(𝑥 + 𝑧) − 𝑎𝑥 + 𝑏𝑦] 

= 𝑎𝑥 + 𝑣[(𝑎 + 𝑐)(𝑠 − 𝑡) + 𝑏(𝑠 + 𝑡)] + 𝑣2[(𝑎 + 𝑐)(𝑠 + 𝑡) − 𝑎𝑥 + 𝑏(𝑠 − 𝑡)] 

= 𝑎𝑥 + 𝑣[(𝑎 + 𝑏 + 𝑐)𝑠 − (𝑎 − 𝑏 + 𝑐)𝑡] + 𝑣2[−𝑎𝑥 + (𝑎 + 𝑏 + 𝑐)𝑠 

    +(𝑎 − 𝑏 + 𝑐)𝑡] 

= 𝑎𝑥 

= 1 

Hence, 𝑎 + 𝑣𝑏 + 𝑣2𝑐 ∈ ℛ2,𝑞 is a unit. 

 

 By applying the Chinese Remainder Theorem, we can obtain orthogonal idempotent elements 

in ℛ2,𝑞. These elements are (1 − 𝑣2), 
𝑝+1

2
(𝑣2 + 𝑣) and 

𝑝+1

2
(𝑣2 − 𝑣) that satisfy 

(1 − 𝑣2) +
𝑝 + 1

2
(𝑣2 + 𝑣) +

𝑝 + 1

2
(𝑣2 − 𝑣) = 1. 

Every element 𝑎 + 𝑣𝑏 + 𝑣2𝑐 in the ring ℛ2,𝑞 can be uniquely written as  

(1 − 𝑣2)𝑎 +
𝑝 + 1

2
(𝑣2 + 𝑣)(𝑏 + 𝑐) +

𝑝 + 1

2
(𝑣2 − 𝑣)(𝑐 − 𝑏) 

For simplicity of the writing, we use the notation µ1 = (1 − 𝑣2), µ2 =
𝑝+1

2
(𝑣2 + 𝑣) and  

µ3 =
𝑝+1

2
(𝑣2 − 𝑣). Therefore, we can write every element 𝑎 + 𝑣𝑏 + 𝑣2𝑐 in the ring ℛ2,𝑞 as 

𝑎 + 𝑣𝑏 + 𝑣2𝑐 = µ1(𝑎) + µ2(𝑏 + 𝑐) + µ3(𝑐 − 𝑏). 

 

Matrices over 𝓡𝟐,𝒒 

In this section, we will present some results regarding the properties of matrices over the ring ℛ2,𝑞. Let 

𝐴 be an 𝑛 × 𝑛 matrix over ℛ2,𝑞, written as follows  

𝐴 = [𝑎𝑖𝑗 + 𝑣𝑏𝑖𝑗 + 𝑣2𝑐𝑖𝑗] =

[
 
 
 
𝑎11 + 𝑣𝑏11 + 𝑣2𝑐11 𝑎12 + 𝑣𝑏12 + 𝑣2𝑐12 … 𝑎1𝑛 + 𝑣𝑏1𝑛 + 𝑣2𝑐1𝑛

𝑎21 + 𝑣𝑏21 + 𝑣2𝑐21 𝑎22 + 𝑣𝑏22 + 𝑣2𝑐22 … 𝑎2𝑛 + 𝑣𝑏2𝑛 + 𝑣2𝑐2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 + 𝑣𝑏𝑛1 + 𝑣2𝑐𝑛1 𝑎𝑛2 + 𝑣𝑏𝑛2 + 𝑣2𝑐𝑛2 … 𝑎𝑛𝑛 + 𝑣𝑏𝑛𝑛 + 𝑣2𝑐𝑛𝑛]

 
 
 
 

Then 𝐴 can be uniquely written as 

𝐴 = µ1𝐴1 + µ2𝐴2 + µ3𝐴3         (1) 

where 𝐴1 = [𝑎𝑖𝑗], 𝐴2 = [𝑏𝑖𝑗 + 𝑐𝑖𝑗] and 𝐴3 = [𝑐𝑖𝑗 − 𝑏𝑖𝑗]. 

 If 𝐴 is an 𝑛 × 𝑛 circulant matrix over ℛ2,𝑞 and  written as equation (1), note that 

𝐴 = 𝑐𝑖𝑟𝑐(𝑎11 + 𝑣𝑏11 + 𝑣2𝑐11, … , 𝑎1𝑛 + 𝑣𝑏1𝑛 + 𝑣2𝑐1𝑛) 

 = 𝑐𝑖𝑟𝑐(µ1[𝑎11] + µ2[𝑏11 + 𝑐11] + µ3[𝑐11 − 𝑏11], … , µ1[𝑎1𝑛] + µ2[𝑏1𝑛 + 𝑐1𝑛] + µ3[𝑐1𝑛 − 𝑏1𝑛]) 

 = 𝑐𝑖𝑟𝑐(µ1[𝑎11], … , µ1[𝑎1𝑛]) + 𝑐𝑖𝑟𝑐(µ2[𝑏11 + 𝑐11], … , µ2[𝑏1𝑛 + 𝑐1𝑛])    

     +𝑐𝑖𝑟𝑐(µ3[𝑐11 − 𝑏11], … , µ3[𝑐1𝑛 − 𝑏1𝑛]) 

    =  µ1𝑐𝑖𝑟𝑐([𝑎11], … , [𝑎1𝑛]) + µ2([𝑏11 + 𝑐11], … , [𝑏1𝑛 + 𝑐1𝑛]) + µ3𝑐𝑖𝑟𝑐([𝑐11 − 𝑏11], … , [𝑐1𝑛 − 𝑏1𝑛])    

    = µ1𝐴1 + µ2𝐴2 + µ3𝐴3 

Therefore, 𝐴 is a circulant matrix if and only if 𝐴1, 𝐴2 and 𝐴3 are circulant matrices. The following 

theorems present results concerning the properties of matrices over the ring ℛ2,𝑞. 

 

Theorem 3 

Let 𝐴 ∈ [ℛ2,𝑞]
𝑛×𝑛

 written as equation (1). Then 𝐴 is an orthogonal matrix if and only if 𝐴1, 𝐴2 and 𝐴3 are 

orthogonal matrices. 
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Proof. 

We have  

𝐴𝐴𝑇 = µ1𝐴1𝐴1
𝑇 + µ2𝐴2𝐴2

𝑇 + µ3𝐴3𝐴3
𝑇 

(⟹) Suppose 𝐴 is orthogonal and 𝐴𝐴𝑇 = [𝑤𝑖𝑗], 𝐴1𝐴1
𝑇 = [𝑥𝑖𝑗], 𝐴2𝐴2

𝑇 = [𝑦𝑖𝑗], 𝐴3𝐴3
𝑇 = [𝑧𝑖𝑗]. 

• For the (𝑖𝑗)𝑡ℎ entry where 𝑖 ≠ 𝑗, we have 

𝑤𝑖𝑗 = µ1𝑥𝑖𝑗 + µ2𝑦𝑖𝑗 + µ3𝑧𝑖𝑗 

⟹ 𝑤𝑖𝑗 = (1 − 𝑣2)𝑥𝑖𝑗 + (
𝑝 + 1

2
) (𝑣2 + 𝑣)𝑦𝑖𝑗 + (

𝑝 + 1

2
) (𝑣2 − 𝑣)𝑧𝑖𝑗 

⟹ 1 = 𝑥𝑖𝑗 + 𝑣 (
𝑝 + 1

2
) (𝑦𝑖𝑗 − 𝑧𝑖𝑗) + 𝑣2 [(

𝑝 + 1

2
) (𝑦𝑖𝑗 + 𝑧𝑖𝑗) − 𝑥𝑖𝑗] 

⟹ 𝑥𝑖𝑗 = 1, 𝑦𝑖𝑗 − 𝑧𝑖𝑗 = 0, (
𝑝 + 1

2
) 𝑦𝑖𝑗 + (

𝑝 + 1

2
) 𝑧𝑖𝑗 − 𝑥𝑖𝑗 = 0 

⟹ 𝑥𝑖𝑗 = 1, 𝑦𝑖𝑗 − 𝑧𝑖𝑗 = 0,
1

2
𝑦𝑖𝑗 +

1

2
𝑧𝑖𝑗 = 1 

⟹ 𝑥𝑖𝑗 = 𝑦𝑖𝑗 = 𝑧𝑖𝑗 = 1 

 

• For the (𝑖𝑗)𝑡ℎ entry where 𝑖 = 𝑗, we have 

𝑤𝑖𝑗 = µ1𝑥𝑖𝑗 + µ2𝑦𝑖𝑗 + µ3𝑧𝑖𝑗 

⟹ 𝑤𝑖𝑗 = (1 − 𝑣2)𝑥𝑖𝑗 + (
𝑝 + 1

2
) (𝑣2 + 𝑣)𝑦𝑖𝑗 + (

𝑝 + 1

2
) (𝑣2 − 𝑣)𝑧𝑖𝑗 

⟹ 0 = 𝑥𝑖𝑗 + 𝑣 (
𝑝 + 1

2
) (𝑦𝑖𝑗 − 𝑧𝑖𝑗) + 𝑣2 [(

𝑝 + 1

2
) (𝑦𝑖𝑗 + 𝑧𝑖𝑗) − 𝑥𝑖𝑗] 

⟹ 𝑥𝑖𝑗 = 0, 𝑦𝑖𝑗 − 𝑧𝑖𝑗 = 0, (
𝑝 + 1

2
) 𝑦𝑖𝑗 + (

𝑝 + 1

2
) 𝑧𝑖𝑗 − 𝑥𝑖𝑗 = 0 

⟹ 𝑥𝑖𝑗 = 0, 𝑦𝑖𝑗 − 𝑧𝑖𝑗 = 0,
1

2
𝑦𝑖𝑗 +

1

2
𝑧𝑖𝑗 = 1 

⟹ 𝑥𝑖𝑗 = 𝑦𝑖𝑗 = 𝑧𝑖𝑗 = 0 

Hence, 𝐴1, 𝐴2 and 𝐴3 are orthogonal matrices. 

(⟸) Suppose  𝐴1, 𝐴2 and 𝐴3 are orthogonal matrices, such that 𝐴1𝐴1
𝑇 = 𝐴2𝐴2

𝑇 = 𝐴3𝐴3
𝑇 = 𝐼𝑛. We have 

𝐴𝐴𝑇 = µ1𝐴1𝐴1
𝑇 + µ2𝐴2𝐴2

𝑇 + µ3𝐴3𝐴3
𝑇 

= µ1𝐼𝑛 + µ2𝐼𝑛 + µ3𝐼𝑛          

= 𝐼𝑛                                          

Therefore, 𝐴 is also an orthogonal matrix. 

 

Theorem 4 

Let 𝐴 ∈ [ℛ2,𝑞]
𝑛×𝑛

 written as equation (1). Then 𝐴 is an involutory matrix if and only if 𝐴1, 𝐴2 and 𝐴3 are 

involutory matrices. 

 

Proof.  

The proof is almost similar to the proof of the Theorem 3. 

 

Theorem 5 

Let 𝐴 ∈ [ℛ2,𝑞]
𝑛×𝑛

 written as equation (1). Then  

𝑑𝑒𝑡(𝐴) = µ1 det(𝐴1) + µ2 det(𝐴2) + µ3 det(𝐴3) 

 

Proof. 

We will prove this by mathematical induction on the matrix size. 

• For 𝑛 = 2, we have 

𝐴 = (
𝑎11 + 𝑣𝑏11 + 𝑣2𝑐11 𝑎12 + 𝑣𝑏12 + 𝑣2𝑐12

𝑎21 + 𝑣𝑏21 + 𝑣2𝑐21 𝑎22 + 𝑣𝑏22 + 𝑣2𝑐22

) 

    = µ1 (
𝑎11 𝑎12

𝑎21 𝑎22
) + µ2 (

𝑏11 + 𝑐11 𝑏12 + 𝑐12

𝑏21 + 𝑐21 𝑏22 + 𝑐22
) + µ3 (

𝑐11 − 𝑏11 𝑐12 − 𝑏12

𝑐21 − 𝑏21 𝑐22 − 𝑏22
) 
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    = µ1𝐴1 + µ2𝐴2 + µ3𝐴3 

Note that 

det(𝐴) = |
𝑎11 + 𝑣𝑏11 + 𝑣2𝑐11 𝑎12 + 𝑣𝑏12 + 𝑣2𝑐12

𝑎21 + 𝑣𝑏21 + 𝑣2𝑐21 𝑎22 + 𝑣𝑏22 + 𝑣2𝑐22

| 

              = (𝑎11 + 𝑣𝑏11 + 𝑣2𝑐11)(𝑎22 + 𝑣𝑏22 + 𝑣2𝑐22) − (𝑎12 + 𝑣𝑏12 + 𝑣2𝑐12)(𝑎21 + 𝑣𝑏21 + 𝑣2𝑐21) 

= [µ1𝑎11 + µ2(𝑏11 + 𝑐11) + µ3(𝑐11 − 𝑏11)][µ1𝑎22 + µ2(𝑏22 + 𝑐22) + µ3(𝑐22 − 𝑏22)] − 

 [µ1𝑎12 + µ2(𝑏12 + 𝑐12) + µ3(𝑐12 − 𝑏12)][µ1𝑎21 + µ2(𝑏21 + 𝑐21) + µ3(𝑐21 − 𝑏21)] 

              = [µ1𝑎11𝑎22 + µ2(𝑏11 + 𝑐11)(𝑏22 + 𝑐22) + µ3(𝑐11 − 𝑏11)(𝑐22 − 𝑏22)] − 

                   [µ1𝑎12𝑎21 + µ2(𝑏12 + 𝑐12)(𝑏21 + 𝑐21) + µ3(𝑐12 − 𝑏12)(𝑐21 − 𝑏21)] 

              = µ1[𝑎11𝑎22 − 𝑎12𝑎21] + µ2[(𝑏11 + 𝑐11)(𝑏22 + 𝑐22) − (𝑏12 + 𝑐12)(𝑏21 + 𝑐21)] + 

                   µ3[(𝑐11 − 𝑏11)(𝑐22 − 𝑏22) − (𝑐12 − 𝑏12)(𝑐21 − 𝑏21)] 

                              = µ1 det(𝐴1) + µ2 det(𝐴2) + µ3det (𝐴3) 

Therefore, the statement holds for 𝑛 = 2. 

• Assume that for 𝑛 = 𝑚 − 1 the statement holds. We will prove for 𝑛 = 𝑚. 

Now, let 𝐴 ∈ [ℛ2,𝑞]
𝑚×𝑚

. We can write 𝐴 = [𝑎𝑖𝑗 + 𝑣𝑏𝑖𝑗 + 𝑣2𝑐𝑖𝑗] as 

𝐴 = µ1𝐴1 + µ2𝐴2 + µ3𝐴3 

 where 𝐴1 = [𝑎𝑖𝑗], 𝐴2 = [𝑏𝑖𝑗 + 𝑐𝑖𝑗] and 𝐴3 = [𝑐𝑖𝑗 − 𝑏𝑖𝑗]. 

Let 𝑊1𝑖 be the minor of 𝑎1𝑖 + 𝑣𝑏1𝑖 + 𝑣2𝑐1𝑖 in 𝐴, 𝑋1𝑖  be the minor of 𝑎1𝑖 in 𝐴1, 𝑌1𝑖 be the minor of 

(𝑏1𝑖 + 𝑐1𝑖) in 𝐴2 and 𝑍1𝑖 be the minor of (𝑐1𝑖 − 𝑏1𝑖) in 𝐴3. Notice that 

det(𝐴1) = ∑(−1)𝑛

𝑚

𝑖=1

𝑎1𝑖𝑋1𝑖 

det(𝐴2) = ∑(−1)𝑛

𝑚

𝑖=1

(𝑏1𝑖 + 𝑐1𝑖)𝑌1𝑖 

det(𝐴3) = ∑(−1)𝑛

𝑚

𝑖=1

(𝑐1𝑖 − 𝑏1𝑖)𝑍1𝑖 

Now, suppose 𝐷1𝑖 be a submatrix of A where the 1𝑠𝑡 row and 𝑖𝑡ℎ column are deleted. Matrix 𝐷1𝑖 

for 𝑖 = 1,… ,𝑚 can be uniquely written as 𝐷1𝑖 = µ1𝐷1𝑖
1 + µ2𝐷1𝑖

2 + µ3𝐷1𝑖
3 . Hence, 𝑊1𝑖 is det (𝐷1𝑖), 𝑋1𝑖 

is det (𝐷1𝑖
1 ), 𝑌1𝑖 is det (𝐷1𝑖

2 ) and 𝑍1𝑖 is det (𝐷1𝑖
3 ). By the hypothesis, we have 

𝑊1𝑖 = µ1𝑋1𝑖 + µ2𝑌1𝑖 + µ3𝑍1𝑖 

for 𝑖 = 1,… ,𝑚. Hence, we have 

det(𝐴) = ∑(−1)𝑛

𝑚

𝑖=1

(𝑎1𝑖 + 𝑣𝑏1𝑖 + 𝑣2𝑐1𝑖)𝑊1𝑖 

             = ∑(−1)𝑛

𝑚

𝑖=1

[µ1𝑎1𝑖 + µ2(𝑏1𝑖 + 𝑐1𝑖) + µ3(𝑐1𝑖 − 𝑏1𝑖)][µ1𝑋1𝑖 + µ2𝑌1𝑖 + µ3𝑍1𝑖] 

             = ∑(−1)𝑛

𝑚

𝑖=1

[µ1𝑎1𝑖𝑋1𝑖 + µ2(𝑏1𝑖 + 𝑐1𝑖)𝑌1𝑖 + µ3(𝑐1𝑖 − 𝑏1𝑖)𝑍1𝑖] 

             = µ1 ∑(−1)𝑛

𝑚

𝑖=1

𝑎1𝑖𝑋1𝑖 + µ2 ∑(−1)𝑛

𝑚

𝑖=1

(𝑏1𝑖 + 𝑐1𝑖)𝑌1𝑖 + µ3 ∑(−1)𝑛

𝑚

𝑖=1

(𝑐1𝑖 − 𝑏1𝑖)𝑍1𝑖 

             = µ1 det(𝐴1) + µ2 det(𝐴2) + µ3 det(𝐴3) 

We conclude that the statement holds for 𝑛 = 𝑚. 

 

Theorem 6 

Let 𝐴 ∈ [ℛ2,𝑞]
𝑛×𝑛

 written as equation (1). Then det (𝐴) is a unit in ℛ2,𝑞 if and only if det(𝐴1) , det (𝐴2) 

and det(𝐴3) are units in 𝔽𝑞. 

 

Proof. 

From the previous theorem, we have 
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det(𝐴) = µ1det (𝐴1) + µ2det (𝐴2) + µ3det (𝐴3) 

              = (1 − 𝑣2)det (𝐴1) + (
𝑝 + 1

2
) (𝑣2 + 𝑣)det (𝐴2) + (

𝑝 + 1

2
) (𝑣2 − 𝑣) det(𝐴3) 

              = det(𝐴1) + 𝑣 (
𝑝 + 1

2
) [det(𝐴2) − det(𝐴3)] + 𝑣2 [− det(𝐴1) + (

𝑝 + 1

2
) (det(𝐴2)−det(𝐴3))]. 

Based on Lemma 1, we conclude that det(𝐴) is a unit if and only if det(𝐴1) , det(𝐴2) and det(𝐴3) are 

units in 𝔽𝑞. 

 

Orthogonal and Involutory Circulant MDS Matrices over 𝓡𝟐,𝒒 

The following are previous results about circulant MDS matrices of a certain order, wheter involutory or 

orthogonal, in a field with a prime characteristic 𝑝. 

 

Theorem 7 [3] 

Let 𝑝 ≥ 2 be a prime number, 𝑚 ≥ 2.Then there is no involutory circulant MDS matrix over a field of 

characteristic 𝑝 of order 2𝑚. 

 

In 2022, Adhiguna et al. proved this theorem. 

 

Theorem 8 [1] 

Let 𝑝 > 2 be a prime number, 𝑘 ≥ 2  be an integer and 𝑛 = 𝑘𝑝. Then there is no orthogonal circulant 

MDS matrix over a field of characteristic 𝑝 of order 𝑛 and of even order. 

 

Based on previous results and properties of matrices over ℛ2,𝑞, we prove the non-existence of certain 

order involutory circulant MDS matrices and orthogonal circulant MDS matrices over ℛ2,𝑞. 

 

Theorem 9 

Let 𝑝 ≥ 2 is a prime number and 𝑞 = 𝑝𝑟 for some positif integer 𝑟. Then there is no involutory circulant 

MDS matrix over ℛ2,𝑞 of order 2𝑚 for 𝑚 ≥ 2. 

 

Proof. 

Assume that there is an involutory circulant MDS matrix over ℛ2,𝑞 of order 𝑛 = 2𝑚 for 𝑚 ≥ 2, namely 

matrix 𝐴 = [𝑎𝑖𝑗 + 𝑣𝑏𝑖𝑗 + 𝑣2𝑐𝑖𝑗]
𝑛×𝑛

. Matrix 𝐴 can be uniquely written as 𝐴 =  µ1𝐴1 + µ2𝐴2 + µ3𝐴3 where 

𝐴1 = [𝑎𝑖𝑗]
𝑛×𝑛

, 𝐴2 = [𝑏𝑖𝑗 + 𝑐𝑖𝑗]
𝑛×𝑛

 and 𝐴3 = [𝑐𝑖𝑗 − 𝑏𝑖𝑗]
𝑛×𝑛

 are circulant matrices over 𝔽𝑞. By Theorem 4 

and Theorem 6, we have  

det(𝐴) = µ1det (𝐴1) + µ2 det(𝐴2) + µ3 det(𝐴3). 

where 𝐴1, 𝐴2 and 𝐴3 are also involutory circulant matrices. Let matrix 𝐴1
′ = [𝑎𝑖𝑗]

𝑘×𝑘
 be any submatrix of 

𝐴1. Choose 𝐴2
′ = [𝑏𝑖𝑗 + 𝑐𝑖𝑗]

𝑘×𝑘
 and 𝐴3

′ = [𝑐𝑖𝑗 − 𝑏𝑖𝑗]
𝑘×𝑘

 such that  

𝐴′ = [𝑎𝑖𝑗 + 𝑣𝑏𝑖𝑗 + 𝑣2𝑐𝑖𝑗]
𝑘×𝑘

= µ1A1′ + µ2A2′ + µ3A3′. 

It is clear that  det(𝐴′) = µ1det (𝐴1′) + µ2 det(𝐴2′) + µ3 det(𝐴3′) and 𝐴′ is submatrix of 𝐴. Since matrix 𝐴 

is MDS, then det (𝐴′) is a unit. It implies det(𝐴1
′ ) , det (𝐴2

′ ) and det(𝐴3
′ ) are units by Theorem 7. Hence, 

matrix 𝐴1 is an involutory circulant MDS matrix over 𝔽𝑞 of order 𝑛 = 2𝑚 for an 𝑚 ≥ 2. It contradicts 

Cauchois' result in Theorem 7. 

 

Theorem 10 

Let 𝑝 > 2 be a prime number, 𝑞 = 𝑝𝑟 for some positif integer 𝑟, and 𝑘 ≥ 2  be an integer and 𝑛 = 𝑘𝑝. 

Then there is no orthogonal circulant MDS matrix over ℛ2,𝑞 of order 𝑛 and of even order. 

 

Proof.  

The proof is almost similar as the proof of Theorem 9. 
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Conclusion 

There is no involutory circulant MDS matrix of order 2𝑚 for 𝑚 ≥ 2 over ℛ2,𝑞. For integer and 𝑘 ≥ 2, 

there is no orthogonal circulant MDS matrix over ℛ2,𝑞 of order 𝑘𝑝 and of even order. 
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