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Abstract 

Tuberculosis (TB), caused by bacterium Mycobacterium tuberculosis, primarily affects the lungs but can 

also affects other parts of the body. This research investigates TB transmission dynamics using 

Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) models, 

both employing Ordinary Differential Equations (ODEs). The models contain two non-negative 

equilibria:  the disease-free equilibrium point (DFEP) and the endemic equilibrium point (EEP). The 

stability of the models is determined using the Routh-Hurwitz Criterion. The basic reproduction number, 

𝑅0 is calculated using the Next Generation Matrix method. When 𝑅0 < 1, the disease does not spread 

and when 𝑅0 > 1 , it become endemic. Model parameters are derived from TB reported data, with 

simulations conducted in MATLAB using the function ode15s. This research compares SIR and SEIR 

models using TB reported data to assess their accuracy and investigate the effects of varying 

transmission (β) and recovery (γ) rates on infection rates. Higher β increases infections, while higher γ 

values lead to faster recovery and reduce infections population. The findings benefit healthcare by 

showing that with 𝑅0 < 1, current measures are effective but require monitoring. The analysing β and γ 

identifies effective interventions such as vaccination and treatment. Furthermore, comparing SIR and 

SEIR models helps policymakers choose better models for predicting TB outbreaks and evaluating 

public health strategies. 
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1. Introduction 

Originating over thousands of years ago, TB has persisted through the annals of human history, leaving 

an indelible mark on societies, cultures, and civilizations. Its resilience and ability to adapt have often 

outpaced our attempts to mitigate and eradicate it, leading to TB's recognition as a global health 

emergency by the World Health Organization (WHO) in the early 1990s [1]. 

             Globally, TB remains one of the top ten causes of death and the leading cause from a single 

infectious agent [2]. The WHO reported an alarming 10 million new TB cases worldwide in 2020 alone. 

While the disease spans continents, its burden is notably severe in certain regions. For instance, in 

2020, countries such as India, Indonesia, China, the Philippines, and Pakistan accounted for almost 

two-thirds of the global total [2].  

             To address this pressing global health issue, leveraging mathematical models such as the SIR 

(Susceptible-Infectious-Recovered) and SEIR (Susceptible-Exposed-Infectious-Recovered) models 

becomes crucial. These models play a pivotal role in understanding the dynamics of tuberculosis 

transmission, predicting its future trends, and assessing the impact of interventions. The SIR model 

simplifies the population into compartments of susceptible, infectious, and recovered individuals, while 

the SEIR model extends this by adding an exposed compartment, accounting for individuals who are 

infected but not yet infectious. 

               These mathematical models provide valuable insights into designing effective strategies for 

TB control, optimizing resource allocation, and ultimately reducing the burden of this disease. By 

quantifying the intricate interplay of various factors, such as population demographics, transmission 

dynamics, and intervention efficacy, SIR and SEIR models offer a systematic approach to inform 

evidence-based decisions and policy recommendations. 
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1.1. Tuberculosis Disease 

Tuberculosis (TB) has been present for millions of years, with the genus Mycobacterium originating more 

than 150 million years ago. The disease has been associated with a high mortality rate throughout history, 

and in the Middle Ages, it was known as "king's evil" and believed to be curable by a royal touch. It wasn't 

until 1720 that the infectious origin of TB was first conjectured by the English physician Benjamin Marten, 

and in 1882, Robert Koch was able to isolate the tubercle bacillus, which was a significant breakthrough 

in the fight against [3].  

           Genetic studies have been instrumental in tracing the evolution and spread of the TB bacterium, 

revealing a complex history intertwined with human migration [4]. The researcher discusses how the 

genetic diversity of TB strains mirrors the patterns of human settlement and movement, suggesting a 

millennia-long association between the pathogen and its host. This evolutionary perspective is crucial in 

comprehending the resilience and adaptability of TB. 

               Moreover, the transmission of tuberculosis is influenced by several key factors that interact with 

one another. High population density can lead to increased transmission rates [5]. The strength and reach 

of healthcare infrastructure significantly affects disease management and containment. Furthermore, 

socioeconomic status influences susceptibility to TB, with those in less favorable economic conditions 

often facing greater exposure and risk [5]. Comprehensive healthcare access is vital, as insufficient 

medical services may lead to delayed treatment and contribute to the spread of TB. Understanding the 

interplay between these factors is essential for the development and implementation of effective TB control 

measures [5]. 

               However, many researchers discussed the strategies to prevent and control the TB transmission.  

prevent and control the TB transmission, [6] discuss the global strategies for TB control, emphasizing the 

importance of robust health systems and international collaboration in combating this disease. Besides, 

[7] discussed several prevention strategies for TB in Korea. One of the key strategies is the management 

of latent TB infection (LTBI) through screening and treatment of high-risk groups. This involves identifying 

individuals who have been infected with TB bacteria but do not have active TB disease and providing them 

with appropriate treatment to prevent the development of active TB in the future. 

 

2. SIR Model for Tuberculosis 

SIR model is one of a mathematical model to analyze the simulation of the spreading of TB. This research 

will focus on the modification of the basic SIR model initially proposed by Kermack and McKendrick [8]. 

The model has two equilibrium points called disease-free equilibrium points (DFEP) and endemic 

equilibrium point (EEP). Figure 1 shows the flow of SIR model for Tuberculosis. Total population size is 

as 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). 

 

 

 

 

 

Figure 1 Schematic diagram of SIR model transmission for Tuberculosis 

 

Based on Figure 1, the compartment can be understood as follows: 

 

                                                            
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑏𝑁 −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝑆(𝑡), (1) 

                
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− (𝛾 + 𝜇)𝐼(𝑡), (2) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡). 

(3) 

  

With subject to 𝑆(0) ≥ 0, 𝐼(0) ≥ 0, and 𝑅(0) ≥ 0. Based on SIR model, β is the transmission rate. 
Meanwhile, γ represents the recovery rate The population dynamics are also influenced by µ, the 

birth rate, which adds new susceptible individual, and 𝑏, the death rate, which is the natural death 

rate in the population. Let 𝑏 = 𝜇, 
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Hence, SIR model presented by: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡) − 𝜇(1 − 𝑆(𝑡)).                                                         (4) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛾 + 𝜇)𝐼(𝑡).                                                            (5) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡).                                                                               (6) 

2.1. Equilibrium Point 

To find equilibrium points, let Equation (4) to Equation (6) equal to zero [9]. Thus, the equation can be 

written as 
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
= 0.                                                               (7)  

 

2.1.1. The Disease-Free Equilibrium Point (DFEP) 

The DFEP occurs when the infected population, 𝐼 = 0, In other words, there is no active infection in the 

population. Hence, get 𝑆 = 1 and DFEP can be written as: 

𝐷1 = (𝑆1
∗, 𝐼1

∗, 𝑅1
∗) = (1,0,0).                                                            (8) 

 

2.1.2. The Endemic Equilibrium Point (EEP) 

The EEP is the situation where the infected population,𝐼 ≠ 0 , indicating that the disease persists in the 

population and obtained: 

𝐷2 = (𝑆2
∗, 𝐼2

∗) = (
𝛾+𝜇

𝛽
,
𝜇(𝛽−𝛾−𝜇)

𝛽(𝜇+𝛾)
,
𝛾(𝛽−𝛾−𝜇)

𝛽(𝜇+𝛾)
).                                                   (9) 

2.2. Jacobian Matrices 

The Jacobian matrix for SIR model is as follow: 

𝐽(𝐷𝑛) = (𝑆𝑛
∗ , 𝐼𝑛

∗) = [

−𝛽𝐼 − 𝜇 𝛽𝑆 0

𝛽𝐼 𝛽𝑆 − (𝛾 + 𝜇) 0
0 𝛾 −𝜇

],                                          (10) 

 

Substituting the values for the disease-free equilibrium point (DFEP) and endemic equilibrium point 

(EEP) yields the final Jacobian matrix, yields the following matrix: 

𝐽(𝐷1) = (1,0) = [

−𝜇 𝛽 0

0 𝛽 − (𝛾 + 𝜇) 0
0 𝛾 −𝜇

],        𝐽(𝐷2) = (
𝛾+𝜇

𝛽
,
𝜇(𝛽−𝛾−𝜇)

𝛽(𝜇+𝛾)
,
𝛾(𝛽−𝛾−𝜇)

𝛽(𝜇+𝛾)
) =

[
 
 
 

−𝜇𝛽

𝜇+𝛾
−𝛾 − 𝜇 0

𝜇(𝛽−𝛾−𝜇)

𝜇+𝛾
0 0

0 𝛾 −𝜇]
 
 
 

.                                  

2.3 Basic Reproduction Number (𝑹𝟎) for SIR Model 

From the above SIR model, an epidemic occurs if the number of infected classes increases. Therefore, 
𝑑𝐼

𝑑𝑡
> 1 and at the outset of an epidemic, nearly everyone is susceptible. Hence, can say that 𝑆 ≈ 1, 

substitute the 𝑆 = 1, where the susceptible class is equal to the population, and it becomes: 

                                                                        𝑅0 =
𝛽

𝛾+𝜇
> 1.                                                                   (13) 

 

2.4 Stability Analysis at DFEP and EEP for SIR Model 

The DFEP system is stable if and only if 𝑅0 > 1 . To determine the stability analysis at DFEP, need to find 

the 𝑑𝑒𝑡(𝐽 − 𝜆 𝐼) of Equation (11). Thus, the characteristics polynomial is as follow: 

𝑃(𝜆) = 𝜆3 − (−3𝜇 + 𝛽 − 𝛾)𝜆2 − (2𝜇𝛽 − 2𝛾𝜇 − 3𝜇2) + 𝜇2(𝜆 + 𝜇 − 𝛽).                      (14) 

From the Equation (14), 3 is the highest power. For determining the stability of DFEP, the Routh-

Hurwitz criteria test is used. Based on the Routh-Hurwitz criterion [10] the sufficient and necessary 

condition for stability of DFEP are the eigenvalues must be negative real part. From Equation (14), 

the eigenvalues are as follows: 

                         𝜆1 = 𝛽 − 𝛾 − 𝜇                            𝜆2 = −𝜇                            𝜆3 = −𝜇      

From observation, all eigenvalue 𝜆1, 𝜆2  and 𝜆3 < 0 when 𝛽 <  𝛾 +  𝜇.  It is shown that the DFEP is 

stable. 
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Next, is stability at EEP, using the Equation (11), same approach as DFEP and obtained that the 

characteristics polynomial is as follows: 

𝑃(𝜆) = 𝜆3 + (𝜇+𝜇𝑅0)𝜆
2 + (𝜇2𝑅0 + 𝜇𝛽 −

𝜇𝛽

𝑅0
)𝜆 + 𝜇2𝛽 −

𝜇2𝛽

𝑅0
                                  (15) 

 

Let 𝑎1, 𝑎2 and 𝑎3 be coefficient of  𝜆1, 𝜆2 and 𝜆3  and 𝑎4 be the constant of the Equation (15). From 

Routh–Hurwitz stability criterion analysis, if 𝑎1 > 0, 𝑎2 > 0 and  𝑎1𝑎2 − 𝑎3  >  0, then, all the roots of 

the characteristic equation have a negative real part; hence, the equilibrium point (EEP) is stable. Thus, 

the EEP remains stable within the population. 

 

3. SEIR Model for Tuberculosis 

The SEIR epidemic model represents an extension of the SIR model. Within this model describing 

TB transmission, it includes four compartments: susceptible (𝑆(𝑡)), exposed (𝐸(𝑡)), infected (𝐼(𝑡)), 

and recovered (𝑅(𝑡)). 

 

 

 

 

 

Figure 2 Schematic diagram of SIR model transmission for Tuberculosis 

 

Based on Figure 2, the compartment can be understood as follows: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑏𝑁 −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝑆(𝑡),                                                     (16) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− (𝛾+∈)𝐸(𝑡),                                                     (17) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐸 ∈ (𝑡) − (𝛾 + 𝜇)𝐼(𝑡),                                                     (18)                                                      

      
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡).                                                                (19) 

With subject to 𝑆(0) ≥ 0, 𝐼(0) ≥ 0, and 𝑅(0) ≥ 0. Where a new compartment 𝐸(𝑡) denotes individuals 

who are infected but do not yet show symptoms. From SEIR model, the parameter ∈ represents the 

rate at which exposed individuals become infected, where 
1

∈
 is the mean latent period, while other 

parameter are the same as SIR model above. After solving the Equation (16) to Equation (19), the 

system of SEIR model is presented by: 

                                            
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡) + 𝜇(1 − 𝑆(𝑡))                                                           (20) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (∈ +𝜇)𝐸(𝑡)                                                (21) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐸 ∈ (𝑡) − (𝛾 + 𝜇)𝐼(𝑡)                                                     (22) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)                                                                                (23) 

3.1 Equilibrium Point 

To find equilibrium points, let Equation (20) to Equation (23) equal to zero [9]. Thus, the equation can 

be written as: 
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝐸(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
= 0.                                                               (24) 

 

3.1.1. The Disease-Free Equilibrium Point (DFEP) 

The DFEP occurs when the infected population, 𝐼 = 0, In other words, there is no active infection in 

the population. Hence, get 𝑆 = 1 and DFEP can be written as 

𝐷1 = (𝑆1
∗, 𝐼1

∗, 𝐸1
∗, 𝑅1

∗) = (1,0,0,0).                                                         (25)                       
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3.1.2. Basic Reproduction Number (𝑅0), for SEIR Model 

The basic reproduction number, 𝑅0 represents the average number of secondary infections produced by 

a single infected individual in a completely susceptible population. For the SEIR model of tuberculosis, 

the reproduction number is given by the following expression: 

𝑅0 =
−𝛽𝜖

(𝜇+𝜖)(𝜇+𝛾)
 .                                                                    (26) 

3.1.3. The Endemic Equilibrium Point (EEP) 

The EEP is the situation where the infected population,𝐼 ≠ 0 , indicating that the disease persists in 

the population and obtained in terms of 𝑅0, 

𝐷2 = (𝑆2
∗, 𝐸2

∗, 𝐼2
∗, 𝑅2

∗) = (
1

𝑅0
,
𝛾(𝑅0−1)

𝑅0(𝜖+𝜇)
,
𝜇(𝑅0−1)

𝛽
,
𝛾(𝑅0−1)

𝛽
).                                         (27) 

 

3.2. Jacobian Matrices 

The Jacobian matrix for SEIR model is as follow: 

𝐽(𝐷𝑛) = (𝑆𝑛
∗ , 𝐸𝑛

∗ , 𝐼𝑛
∗ , 𝑅𝑛

∗ ) = [

−𝛽𝐼 − 𝜇 0 −𝛽𝑆 0
𝛽𝐼 −(𝜖 + 𝜇) 𝛽𝑆 0
0 𝜖 −(𝛾 + 𝜇) 0
0 0 𝛾 −𝜇

].                                 (28) 

Substituting the values in Equation (25) and Equation (27) into Equation (28) to get Jacobian for 

DFEP and EEP,respectively as follows: 

𝐽(𝐷1) = (1,0,0,0) =

[
 
 
 
𝜇 0 −𝛽 0
0 −(𝜖 + 𝜇) 𝛽 0
0 𝜖 −(𝛾 + 𝜇) 0
0 0 𝛾 −𝜇]

 
 
 

 

𝐽(𝐷2) = (
1

𝑅0
,
𝛾(𝑅0−1)

𝑅0(𝜖+𝜇)
,
𝜇(𝑅0−1)

𝛽
,
𝛾(𝑅0−1)

𝛽
) =

[
 
 
 
 
 −𝜇𝑅0 0

−𝛽

𝑅0
0

𝜇(𝑅0 − 1) −(𝜖 + 𝜇)
𝛽

𝑅0
0

0 𝜖 −(𝛾 + 𝜇) 0
0 0 𝛾 −𝜇]

 
 
 
 
 

. 

3.3. Stability Analysis at DFEP and EEP for SEIR Model 

The stability for DFEP and EEP in SEIR model is same approach as in SIR model. Thus, the 

characteristics polynomial for DFEP is as follows: 

 

𝑃(𝜆) = 𝑎0𝜆
4 + 𝑎1𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆 + 𝑎4. 

Where 

                                          𝑎0 = 1, 

                                           𝑎1 = 4𝜇 + 𝛾 + 𝜖, 

 𝑎2 =  𝛾𝜖 + 3𝜇𝜖 + 3𝛾𝜇 + 6𝜇2 − 𝑅0(𝛾 + 𝜇)(𝜖 + 𝜇), 

𝑎3 = 2𝛾𝜖𝜇 + 3𝛾𝜇2 + 4𝜇3 − 2𝜇𝑅0(𝛾 + 𝜇)(𝜖 + 𝜇), 

𝑎4 = 𝜇2(𝛾𝜖 + 𝜇𝜖 + 𝛾𝜇 + 𝜇2 − 𝑅0(𝛾 + 𝜇)(𝜖 + 𝜇). 

 

Clearly 𝑎0 > 0 , 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0 and 𝑎4 > 0 , hence the eigenvalues will be negative. Thus, 

DFEP will be stable if 𝑅0 < 1. 

Next is stability analysis for EEP, the characteristics polynomial is as follows: 

𝑃(𝜆) = 𝑎0𝜆
4 + 𝑎1𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆 + 𝑎4 
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where,  

                                        𝑎0 = 1, 

                                        𝑎1 = 3𝜇 + 𝛾 + 𝜇𝑅0  , 

                                        𝑎2 = 𝜖𝛾 + 2𝜖𝜇 + 𝜇𝑅0𝜖 + 2𝛾𝜇 + 𝛾𝜇𝑅0 + 3𝜇2 + 3𝜇2𝑅0 − 𝜖𝛽 

                                        𝑎3 = 𝜖𝛾𝜇 + 𝜖𝛾𝜇𝑅0 + 𝛾𝜇2 + 2𝛾𝜇2𝑅0 + 𝜖𝜇2 + 2𝜖𝜇2𝑅0 + 𝜇3 + 3𝜇3𝑅0 −
2𝜖𝛽𝜇

𝑅0
 

                                        𝑎4 = 𝜇(𝛾𝜖𝜇𝑅0 + 𝛾𝜇2𝑅0 + 𝜖𝜇2𝑅0 + 𝜇3𝑅0 −
𝜖𝛽𝜇

𝑅0
 

 

According to the Hurwitz criterion [10], 𝑎1 > 0, 𝑎3 > 0 and 𝑎1𝑎2 − 𝑎3 > 0 , hence the EEP is stable. 

It is clear that, 𝑎1 > 0, 𝑎3 > 0 and 𝑎1𝑎2 − 𝑎3 > 0. Thus, the equilibrium point at EEP is locally 

asymptotically stable if and only if 𝑅0 > 1 ; otherwise, it is unstable. 

 

4. Numerical Simulation of SIR and SEIR Model 

 

4.1. Parameter value of SIR and SEIR  

The numerical simulation for SIR and SEIR models will be based on the epidemiological data from [11]. 

The initial conditions for both models are established using specific values to illustrate the numerical 

results, which are shown in Table 4. 

 

Table 4. Model parameters and initial data 

Parameter Description SIR Value SEIR value 

𝜷 Transmission rate of infected population 0.872 0.872 

∈ Rate of progression to infectious stage from exposed - 1.428 

𝜸 Recovery rate 0.897 0.938 

𝝁 Natural death rate 0.0049 0.0049 

𝑺(𝟎) Initial number of susceptible 67610005 67595153 

𝑬(𝟎) Initial number of exposed - 14852 

𝑰(𝟎) Initial number of infected 20535 20535 

𝑹(𝟎) Initial number of recovered 1230000 1230000 

𝑹𝟎 Reproduction number 0.9664 0.9211 

 

The data from 2005 to 2015 regarding the epidemic are taken into consideration. The total initial 

population 𝑁(0) = 68860540, mirroring Turkey's reported population in 2005 [12]. The initial number of 

infected individuals 𝐼(0) is obtained from a report [13] indicating 20535 cases. Estimation of the initial 

number of exposed individuals 𝐸(0) involves a comparison of infection-to-exposure ratios in literature 

and adaptation to Turkey's data. 

 

 

4.2 Prediction cases of SIR and SEIR models 

This numerical simulation will focus on infected populations to compare which models, SIR or SEIR, 

provide more accurate predictions of infected populations based on reported data.  
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              Figure 3 shows a bar chart illustrating the reported infected data from 2005 to 2015 and a 

line graph representing the predictions made by the SIR model. The value of SIR parameter listed in 

Table 4. It showcases the annual total infection counts of actual cases show at Table 5 alongside the 

model's predictions. The results indicate that the model does a good job approximating the real 

infection counts. 

Figure 4 follows the same approach as Figure 3 but this time it compares the actual yearly 
infection cases to the prediction made by the SEIR model. From observation, it is clear that the model's 
predictions closely match the real data, indicating that the SEIR model is also effective in approximating 
the actual infection counts.  

To show accuracy of the numerical solutions of SIR and SEIR, the relative error is calculated 
by using 

ℎ(𝑡) =
|𝐼𝑐(𝑡)−𝐼𝑑(𝑡)|

𝐼𝑑(𝑡)
, 

 
Where 𝐼𝑐(𝑡) and 𝐼𝑑(𝑡) are the model prediction and the corresponding data at time 𝑡, respectively. 
 
 
 

Table 5. Model parameters and initial data [2,13-22]. 

. 

Year Reported data SIR ERROR(SIR) SEIR ERROR(SEIR) 

2005 20535 20535 - 20535 - 
2006 20526 19628 0.04375 20543 0.00085 
2007 19694 18757 0.04758 19543 0.00767 
2008 18452 17917 0.02900 18497 0.00244 
2009 17402 17111 0.01672 17494 0.00529 
2010 16551 16338 0.01287 16543 0.00048 
2011 15679 15597 0.00523 15643 0.00230 
2012 14691 14889 0.01348 14790 0.00674 
2013 13409 14211 0.05981 13984 0.04288 
2014 13378 13563 0.01383 13222 0.1166 
2015 12772 12944 0.01347 12499 0.2137 
2016 12417 12352 0.00523 11817 0.04832 
2017 12046 11787 0.02150 11171 0.07260 
2018 11786 11248 0.04565 10561 0.10394 
2019 - 10733 - 9984 - 
2020 - 10241 - 9438 - 
2021 - 9772 - 8922 - 
2022 - 9324 - 8435 - 
2023 - 8896 - 7973 - 
2024 - 8487 - 7537 - 

Figure 3     Bar diagram of SIR prediction model 

and reported data  

 

Figure 4     Bar diagram of SEIR prediction 

model and reported data  
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Table 5 presents the reported infected data, model predictions, and their relative errors for the 

years 2005 to 2018. The reported data sources include various WHO (World Health Organization) 

reports from 2007 to 2017. Table 5 shows that for SIR model, the lowest errors occurred in 2011 and 

2016. For SEIR model, the lowest error was in 2010. That indicates that both models have particular 

years where their predictions were exceptionally accurate compared to the actual reported data. 

 

4.3. Variation in Transmission Rate (𝜷), and Recovery Rate (γ) for SIR model 

The aim is to investigate the impact of varying β and 𝛾 values on the infected population. Figure 5 and 

Figure 6 are simulated based on the parameters listed in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 and Figure 6 explore how changing 𝛽 and 𝛾 values affect the number of infected 
individuals. In Figure 5, it can be observed that as β increases to its highest value of 0.892 (represented 
by the blue line), the infected population also increases correspondingly. Conversely, when β decreases 
to its lowest value of 0.772 (red line), the infected population decreases accordingly. This implies that 
an increase in the transmission rate leads to a decrease in the infected population. 

While in Figure 6, the total number of infected individuals for different values of γ (SIR model) 

is depicted. From observation, when 𝛾 = 0.877 (represented by the blue line), the infected population 

increases. However, an increase in the γ value to 0.997 results in a decrease in the number of infected 

individuals. This observation indicates that an increase in the recovery rate leads to a decrease in the 

number of infected individuals. 

4.4 Variation in Transmission Rate, and Recovery Rate for SEIR model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5     Total number of infected individuals 

for different values of transmission rate (β) (SIR) 

( 

Figure 6     Total number of infected individuals 

for different values of recovery rate (γ) (SIR) 

( 

Figure 7     Total number of infected individuals for 

different values of transmission rate (β) (SEIR) 

( 

Figure 8     Total number of infected individuals 

for different values of recovery rate (γ) (SEIR) 

( 
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In Figure 7, the impact of seven 𝛽 values (ranging from 0.772 to 0.892) on the infected population 

is observed. For instance, when 𝛽 is at its highest (0.892), the infected population initially rises from 

2005 to 2006 and then gradually decreases until 2024. Conversely, lowering 𝛽 to 0.772 follows a similar 

pattern of an initial increase followed by a continuous decrease. This indicates that reducing the 

transmission rate leads to fewer infected individuals. 

The initial rise in infections occurs because at the outbreak's start, many people are susceptible. 

With a high transmission rate, the infection spreads rapidly among these susceptible individuals, 

causing a sharp increase in infections initially. As more people get infected, the susceptible population 

shrinks, slowing new infections and resulting in a peak before declining as recoveries outpace new 

infections. 

In Figure 8, the impact of seven 𝛾 values (ranging from 0.878 to 0.998) in the SEIR Model on the 

infected population is analyzed. Lower 𝛾 values (like 0.878) show a higher peak of infected individuals 

initially, followed by a decrease until 2024. Conversely, higher 𝛾 values (like 0.998) result in a lower 

peak and a quicker decline in infections. This indicates that a faster recovery rate leads to fewer infected 

individuals. 

For lower 𝛾 values, slower recovery means infected individuals remain infectious longer, leading 

to more transmissions initially. As the epidemic progresses, even with slower recoveries, the susceptible 

population decreases, causing fewer new infections and decreasing the infected population. Higher 𝛾 

values lead to quicker recoveries, reducing the infectious period and resulting in a lower peak and faster 

decline in infections. 

 

Conclusion 

This research used data on Tuberculosis (TB) and conducted simulations in MATLAB to compare two 

mathematical models: the SIR (Susceptible-Infectious-Recovered) and the SEIR (Susceptible-

Exposed-Infectious-Recovered) models. The SEIR model is likely to provide a more accurate 

representation of TB dynamics because it accounts for the latent period before an infected individual 

becomes infectious. This additional detail can result in more precise predictions, especially in diseases 

like TB, where there is a significant latency period. By analyzing how different rates of transmission (β) 

and recovery (γ) impact infections, while higher recovery rate led to faster healing and a reduced 

infected population. Moreover, the results of this research have significant when the basic reproduction 

number, 𝑅0 < 1 , current measures are effective but need continuous monitoring. Analysing β and γ 

identifies effective interventions like vaccination and treatment. Furthermore, comparing SIR and SEIR 

models helps policymakers choose better models for spreading TB outbreaks and evaluating public 

health strategies. 
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