

https://science.utm.my/procscimath

Volume 24 (2024) 81-89

 81

Introduction to Automatic Differentiation and Neural Differentiation Equation

Mohamad Azrin Syafiq Halim, Yeak Su Hoe
Department of Mathematical Sciences, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

Abstract

This study explores various methods computers used to calculate derivatives, crucial for mathematical

and computational modelling, with a focus on their application in machine learning. Derivatives are

essential in optimization and gradient-based algorithms, key in developing and refining machine

learning models. The research categorizes derivative computation into four main methods: manual

derivation and coding, numerical differentiation via finite difference approximations, symbolic

differentiation, and automatic differentiation (AD). Traditionally, manual derivation has required

individuals to compute and code derivatives themselves, a time-consuming, labour-intensive, and error-

prone process, especially as models become more complex. Numerical differentiation offers a simpler

approach by approximating derivatives using finite difference methods, but it often sacrifices accuracy

and can be numerically unstable. Symbolic differentiation manipulates mathematical expressions

symbolically to derive analytical expressions for derivatives, excelling with complex functions but often

resulting in cumbersome expressions difficult to interpret or implement algorithmically, especially with

functions that have conditional statements or loops. In contrast, AD leverages the chain rule of calculus

to propagate derivatives through a computational graph, generating derivative computations alongside

function evaluations during code execution, facilitating efficient and accurate computation of derivatives,

aligning well with modern programming languages and libraries, and is ideal for gradient-based

optimization in machine learning. Although AD is often referred to as "automatic," it computes

derivatives numerically during code execution rather than performing symbolic manipulation of

expressions, emphasizing its practical implementation in computational frameworks. This research

highlights AD's pivotal role in modern machine learning, particularly in neural networks and backward

propagation algorithms, underscoring its transformative potential in enhancing the efficiency, accuracy,

and scalability of machine learning models, marking the evolution from manual differentiation to

automated symbolic and automatic differentiation techniques.

Keywords: Automatic Differentiation; Neural Ordinary Differential Equations; Back Propagation;

Neural Network

Introduction

Derivative computation within computer programs plays a fundamental role in various scientific and

engineering applications, particularly in the fields of machine learning and numerical simulations. This

research explores the intricate methods of derivative computation, categorizing them into four primary

approaches: manual derivation and coding, numerical differentiation using finite difference

approximations, symbolic differentiation, and automatic differentiation (AD), also known as algorithmic

differentiation.

 Traditionally, machine learning methods have relied on derivative evaluations for optimization

procedures, often requiring manual derivation when introducing new models. However, manual

differentiation is both time-consuming and prone to errors. Numerical differentiation, while simpler, often

proves to be inaccurate and lacks scalability in machine learning applications. Symbolic differentiation

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

 82

addresses some of these issues but tends to produce complex expressions that can limit algorithmic

control flow.

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

83

 Automatic differentiation has emerged as a powerful technique, interpreting computer programs

by integrating derivative values into the variable domain and redefining operators to propagate

derivatives according to the chain rule of differential calculus. Despite its widespread adoption in various

domains, the term "automatic" in AD can be misleading. It specifically refers to a family of techniques

that compute derivatives by accumulating values during code execution, resulting in numerical

derivative evaluations rather than symbolic derivatives.

 In the context of sophisticated automobile simulations, traditional methods for manually or

numerically computing derivatives are often computationally expensive, error-prone, and imprecise,

especially in high-dimensional scenarios. This research aims to enhance the computational efficiency

and numerical stability of derivative calculations by implementing automatic differentiation approaches

tailored to the specific demands of these simulations.

 The objectives of this study are to explore the relevance of automatic differentiation in automotive

applications, explain the concepts and approaches related to AD, examine its application in deep

learning and optimization, generate Python code for its implementation, and identify its importance and

efficacy in deep learning tasks.

 This research focuses on dual numbers, forward mode differentiation, and reverse mode

differentiation, with implementations carried out using Python programming. By doing so, the study

contributes to a better understanding of the practical applications of AD and enriches knowledge on

various implementation options in different contexts.

 Overall, this research aims to unravel the significance of automated differentiation, highlighting

its transformative potential in enhancing the efficiency and scalability of machine-learning models and

other computational applications

Automatic Differentiation with Symbolic and Numerical Differentiation

Differentiable programming relies on automatic differentiation, a method that accurately calculates

function derivatives through a series of algorithmic transformations. [2] points out that AD stands apart

from symbolic and numerical differentiation techniques. Symbolic differentiation involves computing

function derivatives using symbolic expressions, which can become unwieldy with complex functions

despite the potential for simplification.

 Numerical differentiation approximates derivatives using finite differences, which is

straightforward to implement but can introduce numerical inaccuracies and require many function

evaluations, making it computationally expensive [5].

 In contrast, automatic differentiation addresses the limitations of both symbolic and numerical

approaches by recursively applying the chain rule. This method is both fast and accurate, capable of

computing precise derivatives for any differentiable function, regardless of its complexity [1].

Types of Automatic Differentiation

Automatic differentiation offers three modes: forward, backward, and mixed. In forward mode, the

derivative of each variable is computed concerning the input and propagated through the sequence of

operations. In reverse mode, the derivative is calculated by finding the derivative of the output with

respect to each variable and propagating backward through the operations. Mixed mode allows a

combination of these two orientations during computation [3].

 There are two primary approaches to implementing AD: operator overloading and source code

transformation. Operator overloading involves defining additional mathematical operations on custom

types that carry derivative information, allowing the chain rule's recursive application to determine a

function's derivative. Although easy to implement and widely used in languages supporting operator

overloading, it may raise concerns about code optimization, efficiency, and type testability [3].

 Source code transformation translates a function's source code into new code that computes its

derivative. This method is more efficient than operator overloading as it avoids the frequent invocation

of overloaded operators and provides more precise control over numerical computations. However, it

is more challenging than operator overloading, requiring an understanding of the semantics of complex

programs and the provision of appropriate code for derivative computation [4].

 Automatic differentiation, whether in forward, backward, or mixed mode, can be achieved using

both operator overloading and source code transformation methods. The choice between them

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

84

(1)

(2)

(3)

(3)

(4)

depends on specific needs, including the function's complexity, differentiation precision, efficiency,

programming language, and available tools [4]. For instance, operator overloading may be suitable for

small functions and rapid prototyping, while source code transformation may be preferable for complex

functions and production-level code.

Neural Differentiation

Neural differentiation, critical in training neural networks, has evolved significantly. The computation of

derivatives has been central to the success of gradient-based optimization methods since the advent

of backpropagation algorithms. This literature review explores the historical development and

methodologies of neural differentiation, including symbolic, numerical, and notably, automatic

differentiation. Emphasizing AD's efficiency and precision, it discusses various modes and

implementation strategies, including operator overloading and source code transformation. While

acknowledging challenges related to computational cost and numerical stability, the review highlights

practical applications of neural differentiation in optimizing neural networks for diverse domains,

underscoring its ongoing importance in the ever-evolving landscape of machine learning.

Automatic Differentiation and Neural Ode

Automatic Differentiation (AD) enables precise computation of derivatives within a fixed amount of time,

a capability that finds applications in various fields. Differentiation, the measure of rate change, is

fundamental to optimization techniques and is integral in methods like backpropagation in deep neural

networks and the equations of motion in physics. For instance, consider using Newton’s method to

compute the inverse of a function 𝑔, which involves repeated applications as shown in this equation:

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

Here, 𝑥𝑛 represents the variable value at iteration 𝑛. The process continues until convergence,

leveraging derivatives. In machine learning, training parameters often involve minimizing a function

called loss. With potentially billions of parameters, efficient derivative computation methods are crucial.

AD frameworks provide a compact programming language within a larger one, allowing for

gradient computation as quickly as function evaluation. This is particularly useful in deep learning,

where a network with a defined loss function can obtain gradients efficiently.

Dual Numbers

One AD approach involves dual numbers, as described by [1]. Dual numbers can be stored in any data

structure, maintaining their dual properties until arithmetic operations are performed. Differentiation

proceeds as operations are applied to dual numbers.

In practical terms, when computing a function 𝑔's derivative in a programming language, an AD

tool can be utilized to add code handling dual operations, allowing simultaneous computation of the

function and its derivative. Methods include using libraries, source code modification, or operator

overloading, keeping differentiation transparent to the user. Appendix A provides a code implementation

of Dual Numbers, including class definitions and arithmetic and differentiation operations.

Another approach involves Taylor's theorem and dual numbers. Assuming 𝑔 is sufficiently

smooth and 𝜖 is an infinitesimal parameter, a function can be derived as in equation 3.2 based on

Taylor's theorem:

𝑓(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥) + 𝜖2𝑔′′(𝑥) + ⋯

Since 𝜖 is very small, 𝜖2 becomes negligible, simplifying 𝑓(𝑥 + 𝜖) as follows:

𝑔(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥)

Assuming an augmented object 𝑥 + 𝜖 in the calculation of 𝑓, gradients can be extracted from the

coefficient of the 𝜖 term. The addition and multiplication operators for dual numbers are defined as

follows:

(𝑥 + 𝑎𝜖) + (𝑦 + 𝑏𝜖) = (𝑥 + 𝑦) + (𝑎 + 𝑏)𝜖

(𝑥 + 𝑎𝜖)(𝑦 + 𝑏𝜖) = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖 + (𝑎𝑏)𝜖2 = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

85

(5)

(6)

(7)

(8)

(9)

(10)

The division of dual numbers can be approached in two ways:

1

x + y
=

1

y
−

x

y2
+

x2

y3
−

x3

y4
+ ⋯

which converges when |𝑥| < |𝑦|, and

1

x + y
=

1

x
−

y

x2
+

y2

x3
−

y3

x4
+ ⋯

which converges when |𝑦| < |𝑥|. The division operators can be simplified as shown in the equation:

x + aϵ

y + bϵ
= (x + aϵ) (

1

y
−

b

y2
ϵ + ⋯) =

x

y
+ ϵ (

a

y
−

bx

y2
) − ϵ2

ab

y2
+ ⋯

=
x

y
+ ϵ (

a

y
−

bx

y2
)

Polynomials play a significant role in approximating various functions. For example, the exponential

function 𝑒𝑥 can be approximated as follows:

𝑒𝑥 ≈ ∑
1

𝑘!
𝑥𝑘

𝑛

𝑘=0

where 𝑒𝑥 = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 + ⋯. The accuracy of the approximation improves with higher 𝑘.

The gradient of a monomial 𝑥𝑘 with an integer 𝑘 is (𝑥𝑘)′ = 𝑘𝑥𝑘−1. This property is used to derive

exponential Taylor expansions as shown in the equation:

𝑒𝑥+𝑎𝜖 = 𝑒𝑥 + 𝑎𝜖𝑒𝑥 + 𝑎2𝜖2𝑒𝑥 + ⋯ 𝑒𝑥 + 𝑎𝜖𝑒𝑥

Similarly, for trigonometric functions such as sine, equation (7) is derived:

sin(𝑥 + 𝑎𝜖) = sin(𝑥) + 𝑎𝜖 cos(𝑥) − 𝑎2𝜖2sin(𝑥) + ⋯ = sin(𝑥) + 𝑎𝜖 cos(𝑥)

The derivative of √𝑥 is:

(√𝑥)
′
= (𝑥

1
2)

′

=
1

2
𝑥

1
2
−1 =

1

2√𝑥

For the square root of an augmented object, equation (8) is used:

(𝑥 + 𝑎𝜖)
1
2 = √𝑥 +

𝑎𝜖

2√𝑥
−

𝑎2𝜖2

4𝑥
3
2

+ ⋯ = √𝑥 +
𝑎𝜖

2√𝑥

The square root is calculated using Newton's method rather than a polynomial approximation. To find

𝑦,√𝑦 = 𝑥 implies 𝑥2 − 𝑦 = 0, and 𝑓(𝑥) = 𝑥2 − 𝑦. Using Newton’s method in equation (1), the fixed-

point iteration for finding the square root is expressed in equation (9):

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
= 𝑥𝑖 −

𝑥𝑖
2 − 𝑦

2𝑥𝑖

=
1

2
(𝑥𝑖 +

𝑦

𝑥𝑖

) , 𝑖 = 0,1,2, … , 𝑛

The function iterates until convergence to a fixed point, approximating the square root of 𝑦.

Forward Mode Differentiation

In both forward and reverse mode AD algorithms, a function is represented as a computational graph

or Wengert list, where each node 𝑣 corresponds to an intermediate computation. The ultimate

derivative is obtained by chaining together intermediate values. [1] illustrate forward mode AD with the

function 𝑔 in equation (10):

𝑦 = 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2)

The derivative 𝑔′ is evaluated at 𝑥1 = 2 𝑎𝑛𝑑 𝑥2 = 3.

In order to calculate
𝜕𝑦

𝜕𝑥2
, a derivative is assigned to each intermediate variable 𝑣𝑖:

�̇�1 =
𝜕𝑣𝑖

𝜕𝑥2

Forward mode AD tracks intermediary computations at each node. The following calculations are:

𝑣1 = 𝑥1 = 2,

𝑣2 = 𝑥2 = 3,

𝑣3 = 𝑣1 ⋅ 𝑣2 = 2 ⋅ 3 = 6,

𝑣4 = cos(𝑣2) = cos (3)

𝑣5 = 𝑣3 − 𝑣4 = 6 − cos(3) ≈ 5.00

Differentiating each equation 𝑣 with respect to 𝑥2:

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

86

�̇�1 =
𝜕𝑥1

𝜕𝑥2

= 0,

�̇�2 =
𝜕𝑥2

𝜕𝑥2

= 1,

�̇�3 =
𝜕(𝑣1 ∗ 𝑣2)

𝜕𝑣2

= �̇�1(𝑣2) + �̇�2(𝑣1) = 0 + 2 ∗ 1 = 2,

�̇�4 =
𝜕 cos(𝑣2)

𝜕𝑣2

= −𝑠𝑖𝑛(𝑣2) = −sin (3),

�̇�5 =
𝜕(𝑣3 − 𝑣4)

𝜕𝑣2

= �̇�3 − �̇�4 = 2 + sin(3) ≈ 2.05,

This demonstrates forward mode AD’s tracking of intermediary computations. However, it becomes
impractical for high-dimensional input data in deep learning.

Forward mode AD handles vector-valued functions 𝑔:ℝ𝑛 → ℝ𝑚, using the Jacobian matrix:

𝐽𝑓 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

Forward mode scales well with the number of outputs mmm, suitable for generative applications. It also
provides a matrix-free approach for Jacobian-vector products (JVPs):

𝐽𝑓 ∙ 𝑣 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

[

𝑣1

⋮
𝑣𝑛

]

By initializing �̇� = 𝑣, JVPs can be computed in a single pass. For 𝑔:ℝ𝑛 → ℝ, the gradient:

𝛻𝑔 = [
𝜕𝑦

𝜕𝑥1

, ⋯ ,
𝜕𝑦

𝜕𝑥𝑛

]

requires 𝑛 evaluations in forward mode.

Reverse Mode Differentiation

Reverse mode differentiation, or backpropagation, is preferred when the number of inputs 𝑛 is much

larger than the number of outputs mmm, common in deep learning tasks.

For function 𝑦 = 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 − sin(𝑥2)

𝑣1 = 𝑥 = 2,

𝑣2 = 𝑦 = 3,

𝑣3 = 𝑣1 ⋅ 𝑣2 = 2 ⋅ 3 = 6,

𝑣4 = 𝑠𝑖𝑛 𝑣2 = 𝑠𝑖𝑛 3,

𝑣5 = 𝑣3 − 𝑣4 = 6 − 𝑠𝑖𝑛3 ≈ 5.95

In reverse mode, each intermediate variable 𝑣𝑖 is accompanied by an adjoint �̅�𝑖:

�̅�5 = �̅� = 1,

�̅�4 = �̅�5

𝜕𝑣5

𝜕𝑣4

= −1,

�̅�3 = �̅�5

𝜕𝑣5

𝜕𝑣3

= 1 ∗
𝜕𝑣3 − 𝑣4

𝜕𝑣3

= 1,

�̅�2 = �̅�4

𝜕𝑣4

𝜕𝑣2

+ �̅�3

𝜕𝑣3

𝜕𝑣2

= −1 ∗ 𝜕 sin
𝑣2

𝜕𝑣2

+ 1 ∗
𝜕𝑣1𝑣2

𝑣2

= 2 − 𝑐𝑜𝑠3 ≈ 1,

�̅�1 = �̅�3

𝜕𝑣3

𝜕𝑣1

= 1 ∗
𝜕𝑣1𝑣2

𝑣1

= 1 ∗ 𝑣2 = 3

Both reverse mode and forward mode AD yield the same result, albeit through different computational

paths. However, reverse mode AD computes all partial derivatives in a single pass, making it more

efficient, especially for functions with numerous inputs. For instance, for a function 𝑔:ℝ𝑛 → ℝ,, reverse

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

87

mode AD only requires one pass to compute the entire gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, … ,

𝜕𝑦

𝜕𝑥𝑛
], whereas forward

mode AD would necessitate 𝑛 passes.

Similar to forward mode AD, reverse mode can compute transposed Jacobian-vector products (JVPs)

efficiently. By initializing the reverse pass with �̅� = 𝑣, transposed JVPs can be evaluated as shown:

𝐽𝑔
𝑇 ∙ 𝑢 =

[

𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛]

[

𝑣1

⋮
𝑣𝑛

]

Neural Ordinary Differential Equations

Neural Ordinary Differential Equations: Discusses the innovative use of Neural ODEs in modeling

dynamic systems within neural networks. The evolution of a state ℎ(𝑡) is governed by:

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃)

where 𝜃 represents the parameters of the neural network. Neural ODEs provide a framework for

continuous-time models, allowing for flexible modeling of dynamical systems and leveraging the

power of AD for training

Physics in Neural Network

Artificial neural networks have found diverse applications in fields like computer vision and natural

language processing. Physics-informed neural networks (PINNs) represent a recent innovation,

extending neural network usage to solving partial differential equations (PDEs). This approach

leverages the physical properties of PDEs to guide training, making them applicable to various

engineering and scientific domains. This study aims to introduce PINNs by solving a first-order ordinary

differential equation using PyTorch.
 PINNs leverage two fundamental properties of neural networks: their ability to approximate any

function and automatic differentiation for efficient computation of derivatives. The core idea is to

construct a loss function incorporating the PDE residual and boundary conditions, thereby training the

network to approximate the solution effectively.

The loss function is formulated as follows:

ℒ = ℒ𝐷𝐸 + ℒ𝐵𝐶

Where:

ℒ𝐷𝐸 =
1

𝑀
∑(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

2𝑀

𝑗=1

ℒ𝐵𝐶 = (𝑓𝑁𝑁(𝑡0) − 0.5)2 𝑤𝑖𝑡ℎ 𝑡0 = 0

ℒ = ℒ𝐷𝐸 + ℒ𝐵𝐶 =
1

𝑀
∑(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

2𝑀

𝑗=1

+ (𝑓𝑁𝑁(𝑡0) − 0.5)2

The gradient is given as:

𝜕ℒ

𝜕𝑓𝑁𝑁(𝑡𝑘)
=

𝜕ℒ

𝜕𝑓𝑁𝑁,𝑘

 =
1

𝑀
∑ 2(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

𝑀

𝑗=1

⋅ (
𝜕

𝜕𝑓𝑁𝑁,𝑘

𝑑𝑓𝑁𝑁,𝑘

𝑑𝑡
− 𝑅 + 2𝑅𝑓𝑁𝑁,𝑘)

+ 2(𝑓𝑁𝑁(𝑡0) − 0.5)𝛿0,𝑘

Where the Kronecker delta function is given

𝛿𝑗,𝑘 = {
0, 𝑗 ≠ 𝑘
1, 𝑗 = 𝑘

Gradient descent, facilitated by automatic differentiation, minimizes this loss function, effectively training

the network to approximate the solution while satisfying the PDE and boundary conditions.

Results of Neural Network

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

88

The logistic differential equation, a well-known first-order ordinary differential equation used to model

population growth:
𝑑𝑓

𝑑𝑡
= 𝑅𝑓(𝑡)(1 − 𝑓(𝑡))

Here, the function 𝑓(𝑡) represents the population growth rate over time 𝑡, and the parameter

𝑅 determines the maximum population growth rate, significantly affecting the shape of the solution. To

fully specify the solution of this equation, an initial condition must be imposed, for example, at 𝑡 = 0

such as:

𝑓(𝑡 = 0) = 0.5

The General Equation is:

𝑓 =
𝑒𝑅𝑡

𝑒𝑅𝑡 + 1
=

𝑒𝑅𝑡 ⋅ 𝑒−𝑅𝑡

(𝑒𝑅𝑡 + 1)𝑒−𝑅𝑡
=

1

1 + 𝑒−𝑅𝑡

Utilizing Python code, results demonstrate efficient convergence in replicating the analytical solution for

a simple differential equation. The Adam optimizer with a learning rate of 0.1 and 100 epochs suffices

to achieve near-perfect replication of the analytical result for a specified maximum growth rate,

𝑅 = 0.50.

Figure 2 Exact solution with an initial value 𝑓(𝑡 = 0) = 0.5 and at 𝑅 = 0.5

Figure 2 The Loss Graph Over 100 epochs

 While this study successfully solves a simple one-dimensional problem, achieving convergence

for more complex equations poses challenges. Techniques like domain decomposition and smart

weighting of loss contributions are crucial for tackling time-dependent and multidimensional problems

effectively.

Conclusion

The exploration of derivative computation within computer programs reveals significant advancements

over traditional methods. The study categorizes derivative computation into four primary methods:

Halim and Yeak (2024) Proc. Sci. Math. 24: 81-89

89

manual derivation and coding, numerical differentiation using finite difference approximations, symbolic

differentiation, and automatic differentiation (AD).

 Manual differentiation, though historically crucial, is labour-intensive and prone to error,

especially as model complexity increases. Numerical differentiation offers simplicity but at the cost of

accuracy and stability. Symbolic differentiation, while precise, often produces overly complex

expressions that can be difficult to interpret and implement.

 Automatic differentiation, leveraging the chain rule of calculus, stands out for its efficiency and

accuracy. It integrates seamlessly with modern programming languages and libraries, making it

particularly suitable for gradient-based optimization in machine learning. AD's ability to compute

derivatives numerically during code execution has made it an essential tool in the development of

scalable and precise machine-learning models.

 The implementation of AD in neural networks, particularly through algorithms like

backpropagation, has demonstrated significant potential in improving the efficiency, accuracy, and

scalability of machine-learning models. The transition from manual and symbolic differentiation to AD

marks a pivotal evolution in computational methods, reflecting a broader trend towards automation and

increased computational efficiency in the field of machine learning

Acknowledgement

I am deeply grateful to Allah SWT for His Grace, Blessings, Love, Guidance, and Power, which have

allowed me to complete my final year project. Alhamdulillah for the simplicity in this accomplishment. I

extend my heartfelt gratitude to my supervisor, Assoc. Prof. Dr. Yeak Su Hoe, whose unwavering

patience and invaluable guidance have been indispensable throughout this endeavour, shaping this

report significantly. To my beloved parents and family, your unwavering love, encouragement, and

support have been my pillars throughout my college journey, and your belief in me has been my greatest

motivation. To my friends, thank you for the countless moments of laughter and shared sorrows; your

friendship has made this journey memorable and meaningful, and may we continue to support each

other in our future endeavours.

References

[1] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

"Automatic differentiation in machine learning: a survey." Journal of Machine Learning Research

18, no. 153 (2018): 1-43.

[2] Charles, C. (2019). "Automatic differentiation: Techniques and applications." Retrieved from

[source].

[3] Griewank, A., & Walther, A. (2008). "Evaluating derivatives: principles and techniques of algorithmic

differentiation." SIAM.

[4] Revels, J., Lubin, M., & Papamarkou, T. (2018). "Forward-mode automatic differentiation in Julia."

arXiv preprint arXiv:1607.07892.

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. "Numerical

recipes 3rd edition: The art of scientific computing." Cambridge University Press, 2007.

