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Abstract 

This study explores various methods computers used to calculate derivatives, crucial for mathematical 

and computational modelling, with a focus on their application in machine learning. Derivatives are 

essential in optimization and gradient-based algorithms, key in developing and refining machine 

learning models. The research categorizes derivative computation into four main methods: manual 

derivation and coding, numerical differentiation via finite difference approximations, symbolic 

differentiation, and automatic differentiation (AD). Traditionally, manual derivation has required 

individuals to compute and code derivatives themselves, a time-consuming, labour-intensive, and error-

prone process, especially as models become more complex. Numerical differentiation offers a simpler 

approach by approximating derivatives using finite difference methods, but it often sacrifices accuracy 

and can be numerically unstable. Symbolic differentiation manipulates mathematical expressions 

symbolically to derive analytical expressions for derivatives, excelling with complex functions but often 

resulting in cumbersome expressions difficult to interpret or implement algorithmically, especially with 

functions that have conditional statements or loops. In contrast, AD leverages the chain rule of calculus 

to propagate derivatives through a computational graph, generating derivative computations alongside 

function evaluations during code execution, facilitating efficient and accurate computation of derivatives, 

aligning well with modern programming languages and libraries, and is ideal for gradient-based 

optimization in machine learning. Although AD is often referred to as "automatic," it computes 

derivatives numerically during code execution rather than performing symbolic manipulation of 

expressions, emphasizing its practical implementation in computational frameworks. This research 

highlights AD's pivotal role in modern machine learning, particularly in neural networks and backward 

propagation algorithms, underscoring its transformative potential in enhancing the efficiency, accuracy, 

and scalability of machine learning models, marking the evolution from manual differentiation to 

automated symbolic and automatic differentiation techniques. 

Keywords: Automatic Differentiation; Neural Ordinary Differential Equations; Back Propagation; 

Neural Network 

 

Introduction 

Derivative computation within computer programs plays a fundamental role in various scientific and 

engineering applications, particularly in the fields of machine learning and numerical simulations. This 

research explores the intricate methods of derivative computation, categorizing them into four primary 

approaches: manual derivation and coding, numerical differentiation using finite difference 

approximations, symbolic differentiation, and automatic differentiation (AD), also known as algorithmic 

differentiation. 

 Traditionally, machine learning methods have relied on derivative evaluations for optimization 

procedures, often requiring manual derivation when introducing new models. However, manual 

differentiation is both time-consuming and prone to errors. Numerical differentiation, while simpler, often 

proves to be inaccurate and lacks scalability in machine learning applications. Symbolic differentiation 
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addresses some of these issues but tends to produce complex expressions that can limit algorithmic 

control flow. 
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 Automatic differentiation has emerged as a powerful technique, interpreting computer programs 

by integrating derivative values into the variable domain and redefining operators to propagate 

derivatives according to the chain rule of differential calculus. Despite its widespread adoption in various 

domains, the term "automatic" in AD can be misleading. It specifically refers to a family of techniques 

that compute derivatives by accumulating values during code execution, resulting in numerical 

derivative evaluations rather than symbolic derivatives. 

 In the context of sophisticated automobile simulations, traditional methods for manually or 

numerically computing derivatives are often computationally expensive, error-prone, and imprecise, 

especially in high-dimensional scenarios. This research aims to enhance the computational efficiency 

and numerical stability of derivative calculations by implementing automatic differentiation approaches 

tailored to the specific demands of these simulations. 

 The objectives of this study are to explore the relevance of automatic differentiation in automotive 

applications, explain the concepts and approaches related to AD, examine its application in deep 

learning and optimization, generate Python code for its implementation, and identify its importance and 

efficacy in deep learning tasks. 

 This research focuses on dual numbers, forward mode differentiation, and reverse mode 

differentiation, with implementations carried out using Python programming. By doing so, the study 

contributes to a better understanding of the practical applications of AD and enriches knowledge on 

various implementation options in different contexts. 

 Overall, this research aims to unravel the significance of automated differentiation, highlighting 

its transformative potential in enhancing the efficiency and scalability of machine-learning models and 

other computational applications 

 

Automatic Differentiation with Symbolic and Numerical Differentiation 

Differentiable programming relies on automatic differentiation, a method that accurately calculates 

function derivatives through a series of algorithmic transformations. [2] points out that AD stands apart 

from symbolic and numerical differentiation techniques. Symbolic differentiation involves computing 

function derivatives using symbolic expressions, which can become unwieldy with complex functions 

despite the potential for simplification. 

 Numerical differentiation approximates derivatives using finite differences, which is 

straightforward to implement but can introduce numerical inaccuracies and require many function 

evaluations, making it computationally expensive [5]. 

 In contrast, automatic differentiation addresses the limitations of both symbolic and numerical 

approaches by recursively applying the chain rule. This method is both fast and accurate, capable of 

computing precise derivatives for any differentiable function, regardless of its complexity [1]. 

 

Types of Automatic Differentiation 

Automatic differentiation offers three modes: forward, backward, and mixed. In forward mode, the 

derivative of each variable is computed concerning the input and propagated through the sequence of 

operations. In reverse mode, the derivative is calculated by finding the derivative of the output with 

respect to each variable and propagating backward through the operations. Mixed mode allows a 

combination of these two orientations during computation [3]. 

 There are two primary approaches to implementing AD: operator overloading and source code 

transformation. Operator overloading involves defining additional mathematical operations on custom 

types that carry derivative information, allowing the chain rule's recursive application to determine a 

function's derivative. Although easy to implement and widely used in languages supporting operator 

overloading, it may raise concerns about code optimization, efficiency, and type testability [3]. 

 Source code transformation translates a function's source code into new code that computes its 

derivative. This method is more efficient than operator overloading as it avoids the frequent invocation 

of overloaded operators and provides more precise control over numerical computations. However, it 

is more challenging than operator overloading, requiring an understanding of the semantics of complex 

programs and the provision of appropriate code for derivative computation [4]. 

 Automatic differentiation, whether in forward, backward, or mixed mode, can be achieved using 

both operator overloading and source code transformation methods. The choice between them 
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(1) 

(2) 

(3) 

(3) 

(4) 

depends on specific needs, including the function's complexity, differentiation precision, efficiency, 

programming language, and available tools [4]. For instance, operator overloading may be suitable for 

small functions and rapid prototyping, while source code transformation may be preferable for complex 

functions and production-level code. 

 

Neural Differentiation 

Neural differentiation, critical in training neural networks, has evolved significantly. The computation of 

derivatives has been central to the success of gradient-based optimization methods since the advent 

of backpropagation algorithms. This literature review explores the historical development and 

methodologies of neural differentiation, including symbolic, numerical, and notably, automatic 

differentiation. Emphasizing AD's efficiency and precision, it discusses various modes and 

implementation strategies, including operator overloading and source code transformation. While 

acknowledging challenges related to computational cost and numerical stability, the review highlights 

practical applications of neural differentiation in optimizing neural networks for diverse domains, 

underscoring its ongoing importance in the ever-evolving landscape of machine learning. 

 

Automatic Differentiation and Neural Ode 

Automatic Differentiation (AD) enables precise computation of derivatives within a fixed amount of time, 

a capability that finds applications in various fields. Differentiation, the measure of rate change, is 

fundamental to optimization techniques and is integral in methods like backpropagation in deep neural 

networks and the equations of motion in physics. For instance, consider using Newton’s method to 

compute the inverse of a function 𝑔, which involves repeated applications as shown in this equation: 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

Here, 𝑥𝑛 represents the variable value at iteration 𝑛. The process continues until convergence, 

leveraging derivatives. In machine learning, training parameters often involve minimizing a function 

called loss. With potentially billions of parameters, efficient derivative computation methods are crucial. 

AD frameworks provide a compact programming language within a larger one, allowing for 

gradient computation as quickly as function evaluation. This is particularly useful in deep learning, 

where a network with a defined loss function can obtain gradients efficiently. 

Dual Numbers 

One AD approach involves dual numbers, as described by [1]. Dual numbers can be stored in any data 

structure, maintaining their dual properties until arithmetic operations are performed. Differentiation 

proceeds as operations are applied to dual numbers.  

In practical terms, when computing a function 𝑔's derivative in a programming language, an AD 

tool can be utilized to add code handling dual operations, allowing simultaneous computation of the 

function and its derivative. Methods include using libraries, source code modification, or operator 

overloading, keeping differentiation transparent to the user. Appendix A provides a code implementation 

of Dual Numbers, including class definitions and arithmetic and differentiation operations. 

Another approach involves Taylor's theorem and dual numbers. Assuming 𝑔 is sufficiently 

smooth and 𝜖 is an infinitesimal parameter, a function can be derived as in equation 3.2 based on 

Taylor's theorem: 

𝑓(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥) + 𝜖2𝑔′′(𝑥) + ⋯ 

Since 𝜖 is very small, 𝜖2 becomes negligible, simplifying 𝑓(𝑥 + 𝜖) as follows: 

𝑔(𝑥 + 𝜖) = 𝑔(𝑥) + 𝜖𝑔′(𝑥) 

Assuming an augmented object 𝑥 + 𝜖 in the calculation of 𝑓, gradients can be extracted from the 

coefficient of the 𝜖 term. The addition and multiplication operators for dual numbers are defined as 

follows: 

(𝑥 + 𝑎𝜖) + (𝑦 + 𝑏𝜖) = (𝑥 + 𝑦) + (𝑎 + 𝑏)𝜖 

 

(𝑥 + 𝑎𝜖)(𝑦 + 𝑏𝜖) = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖 + (𝑎𝑏)𝜖2 = 𝑥𝑦 + (𝑥𝑏 + 𝑦𝑎)𝜖 
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(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The division of dual numbers can be approached in two ways: 

1

x + y
=

1

y
−

x

y2
+

x2

y3
−

x3

y4
+ ⋯ 

which converges when |𝑥| < |𝑦|, and 

1

x + y
=

1

x
−

y

x2
+

y2

x3
−

y3

x4
+ ⋯  

which converges when |𝑦| < |𝑥|. The division operators can be simplified as shown in the equation: 

x + aϵ

y + bϵ
= (x + aϵ) (

1

y
−

b

y2
ϵ + ⋯ ) =

x

y
+ ϵ (

a

y
−

bx

y2
) − ϵ2

ab

y2
+ ⋯  

=
x

y
+ ϵ (

a

y
−

bx

y2
) 

Polynomials play a significant role in approximating various functions. For example, the exponential 

function  𝑒𝑥   can be approximated as follows: 

𝑒𝑥 ≈ ∑
1

𝑘!
𝑥𝑘

𝑛

𝑘=0

 

where 𝑒𝑥 = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 + ⋯. The accuracy of the approximation improves with higher 𝑘. 

The gradient of a monomial  𝑥𝑘 with an integer 𝑘 is (𝑥𝑘)′ = 𝑘𝑥𝑘−1. This property is used to derive 

exponential Taylor expansions as shown in the equation: 

𝑒𝑥+𝑎𝜖 = 𝑒𝑥 + 𝑎𝜖𝑒𝑥 + 𝑎2𝜖2𝑒𝑥 + ⋯ 𝑒𝑥 + 𝑎𝜖𝑒𝑥 

Similarly, for trigonometric functions such as sine, equation (7) is derived: 

sin(𝑥 + 𝑎𝜖) = sin(𝑥) + 𝑎𝜖 cos(𝑥) − 𝑎2𝜖2sin(𝑥) + ⋯ = sin(𝑥) + 𝑎𝜖 cos(𝑥) 

The derivative of √𝑥 is: 

(√𝑥)
′
= (𝑥

1
2)

′

=
1

2
𝑥

1
2
−1 =

1

2√𝑥
 

For the square root of an augmented object, equation (8) is used: 

(𝑥 + 𝑎𝜖)
1
2 = √𝑥 +

𝑎𝜖

2√𝑥
−

𝑎2𝜖2

4𝑥
3
2

+ ⋯ = √𝑥 +
𝑎𝜖

2√𝑥
 

The square root is calculated using Newton's method rather than a polynomial approximation. To find 

𝑦,√𝑦 = 𝑥 implies 𝑥2 − 𝑦 = 0, and 𝑓(𝑥) = 𝑥2 − 𝑦. Using Newton’s method in equation (1), the fixed-

point iteration for finding the square root is expressed in equation (9): 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
= 𝑥𝑖 −

𝑥𝑖
2 − 𝑦

2𝑥𝑖

=
1

2
(𝑥𝑖 +

𝑦

𝑥𝑖

) ,             𝑖 = 0,1,2, … , 𝑛 

The function iterates until convergence to a fixed point, approximating the square root of 𝑦. 

 

Forward Mode Differentiation 

In both forward and reverse mode AD algorithms, a function is represented as a computational graph 

or Wengert list, where each node 𝑣 corresponds to an intermediate computation. The ultimate 

derivative is obtained by chaining together intermediate values. [1] illustrate forward mode AD with the 

function 𝑔 in equation (10): 

𝑦 = 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 − cos(𝑥2) 

The derivative 𝑔′ is evaluated at 𝑥1  = 2 𝑎𝑛𝑑 𝑥2 = 3. 

In order to calculate 
𝜕𝑦

𝜕𝑥2
, a derivative is assigned to each intermediate variable 𝑣𝑖: 

�̇�1 =
𝜕𝑣𝑖

𝜕𝑥2

 

Forward mode AD tracks intermediary computations at each node. The following calculations are: 

𝑣1 = 𝑥1 = 2, 

𝑣2 = 𝑥2 = 3, 

𝑣3 = 𝑣1 ⋅ 𝑣2 = 2 ⋅ 3 = 6, 

𝑣4 = cos(𝑣2) = cos (3) 

𝑣5 = 𝑣3 − 𝑣4 = 6 − cos(3) ≈ 5.00 

Differentiating each equation 𝑣 with respect to 𝑥2: 
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�̇�1 =
𝜕𝑥1

𝜕𝑥2

= 0, 

�̇�2 =
𝜕𝑥2

𝜕𝑥2

= 1, 

�̇�3 =
𝜕(𝑣1 ∗ 𝑣2)

𝜕𝑣2

= �̇�1(𝑣2) + �̇�2(𝑣1) = 0 + 2 ∗ 1 = 2, 

�̇�4 =
𝜕 cos(𝑣2)

𝜕𝑣2

= −𝑠𝑖𝑛(𝑣2) = −sin (3), 

�̇�5 =
𝜕(𝑣3 − 𝑣4)

𝜕𝑣2

= �̇�3 − �̇�4 = 2 + sin(3) ≈ 2.05, 

This demonstrates forward mode AD’s tracking of intermediary computations. However, it becomes 
impractical for high-dimensional input data in deep learning. 
 

 

Forward mode AD handles vector-valued functions 𝑔:ℝ𝑛 → ℝ𝑚, using the Jacobian matrix: 

𝐽𝑓 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

 

Forward mode scales well with the number of outputs mmm, suitable for generative applications. It also 
provides a matrix-free approach for Jacobian-vector products (JVPs): 

𝐽𝑓 ∙ 𝑣 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

[

𝑣1

⋮
𝑣𝑛 

] 

By initializing  �̇� = 𝑣, JVPs can be computed in a single pass. For 𝑔:ℝ𝑛 → ℝ, the gradient: 

𝛻𝑔 = [
𝜕𝑦

𝜕𝑥1

, ⋯ ,
𝜕𝑦

𝜕𝑥𝑛

] 

requires 𝑛 evaluations in forward mode. 
 

Reverse Mode Differentiation 

Reverse mode differentiation, or backpropagation, is preferred when the number of inputs 𝑛 is much 

larger than the number of outputs mmm, common in deep learning tasks. 

For function 𝑦 = 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 − sin(𝑥2) 

𝑣1 = 𝑥 = 2, 

𝑣2 = 𝑦 = 3, 

𝑣3 = 𝑣1 ⋅ 𝑣2 = 2 ⋅ 3 = 6, 

𝑣4 = 𝑠𝑖𝑛 𝑣2 = 𝑠𝑖𝑛 3, 

𝑣5 = 𝑣3 − 𝑣4 = 6 − 𝑠𝑖𝑛3 ≈ 5.95 

In reverse mode, each intermediate variable 𝑣𝑖 is accompanied by an adjoint  �̅�𝑖: 

�̅�5 = �̅� = 1, 

�̅�4 = �̅�5

𝜕𝑣5

𝜕𝑣4

= −1, 

�̅�3 = �̅�5

𝜕𝑣5

𝜕𝑣3

= 1 ∗
𝜕𝑣3 − 𝑣4

𝜕𝑣3

= 1, 

�̅�2 = �̅�4

𝜕𝑣4

𝜕𝑣2

+ �̅�3

𝜕𝑣3

𝜕𝑣2

= −1 ∗ 𝜕 sin
𝑣2

𝜕𝑣2

+ 1 ∗
𝜕𝑣1𝑣2

𝑣2

= 2 − 𝑐𝑜𝑠3 ≈ 1, 

�̅�1 = �̅�3

𝜕𝑣3

𝜕𝑣1

= 1 ∗
𝜕𝑣1𝑣2

𝑣1

= 1 ∗ 𝑣2 = 3 

Both reverse mode and forward mode AD yield the same result, albeit through different computational 

paths. However, reverse mode AD computes all partial derivatives in a single pass, making it more 

efficient, especially for functions with numerous inputs. For instance, for a function 𝑔:ℝ𝑛 → ℝ,, reverse 
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mode AD only requires one pass to compute the entire gradient ∇𝑔 = [
𝜕𝑦

𝜕𝑥1
, … ,

𝜕𝑦

𝜕𝑥𝑛
], whereas forward 

mode AD would necessitate 𝑛 passes. 

Similar to forward mode AD, reverse mode can compute transposed Jacobian-vector products (JVPs) 

efficiently. By initializing the reverse pass with �̅� =  𝑣, transposed JVPs can be evaluated as shown: 

𝐽𝑔
𝑇 ∙ 𝑢 =

[
 
 
 
 
𝜕𝑦1

𝜕𝑥1

⋯
𝜕𝑦1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

⋯
𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 

[

𝑣1

⋮
𝑣𝑛 

] 

Neural Ordinary Differential Equations 

Neural Ordinary Differential Equations: Discusses the innovative use of Neural ODEs in modeling 

dynamic systems within neural networks. The evolution of a state ℎ(𝑡) is governed by: 

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃) 

where 𝜃 represents the parameters of the neural network. Neural ODEs provide a framework for 

continuous-time models, allowing for flexible modeling of dynamical systems and leveraging the 

power of AD for training 

 

Physics in Neural Network 

Artificial neural networks have found diverse applications in fields like computer vision and natural 

language processing. Physics-informed neural networks (PINNs) represent a recent innovation, 

extending neural network usage to solving partial differential equations (PDEs). This approach 

leverages the physical properties of PDEs to guide training, making them applicable to various 

engineering and scientific domains. This study aims to introduce PINNs by solving a first-order ordinary 

differential equation using PyTorch.  
 PINNs leverage two fundamental properties of neural networks: their ability to approximate any 

function and automatic differentiation for efficient computation of derivatives. The core idea is to 

construct a loss function incorporating the PDE residual and boundary conditions, thereby training the 

network to approximate the solution effectively. 

The loss function is formulated as follows: 

ℒ = ℒ𝐷𝐸 + ℒ𝐵𝐶   

Where: 

ℒ𝐷𝐸 =
1

𝑀
∑(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

2𝑀

𝑗=1

 

ℒ𝐵𝐶 = (𝑓𝑁𝑁(𝑡0) − 0.5)2 𝑤𝑖𝑡ℎ 𝑡0 = 0 

ℒ = ℒ𝐷𝐸 + ℒ𝐵𝐶 =
1

𝑀
∑(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

2𝑀

𝑗=1

+ (𝑓𝑁𝑁(𝑡0) − 0.5)2 

The gradient is given as: 

𝜕ℒ

𝜕𝑓𝑁𝑁(𝑡𝑘)
=

𝜕ℒ

𝜕𝑓𝑁𝑁,𝑘

 

                  =
1

𝑀
∑ 2(

𝑑𝑓𝑁𝑁

𝑑𝑡
|𝑡𝑗 − 𝑅𝑓𝑁𝑁(𝑡𝑗) (1 − 𝑓𝑁𝑁(𝑡𝑗)))

𝑀

𝑗=1

⋅ (
𝜕

𝜕𝑓𝑁𝑁,𝑘

𝑑𝑓𝑁𝑁,𝑘

𝑑𝑡
− 𝑅 + 2𝑅𝑓𝑁𝑁,𝑘)

+ 2(𝑓𝑁𝑁(𝑡0) − 0.5)𝛿0,𝑘  

Where the Kronecker delta function is given 

𝛿𝑗,𝑘 = {
0, 𝑗 ≠ 𝑘
1, 𝑗 = 𝑘

 

 

Gradient descent, facilitated by automatic differentiation, minimizes this loss function, effectively training 

the network to approximate the solution while satisfying the PDE and boundary conditions. 

Results of Neural Network 
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The logistic differential equation, a well-known first-order ordinary differential equation used to model 

population growth: 
𝑑𝑓

𝑑𝑡
= 𝑅𝑓(𝑡)(1 − 𝑓(𝑡)) 

Here, the function 𝑓(𝑡) represents the population growth rate over time 𝑡, and the parameter 

𝑅 determines the maximum population growth rate, significantly affecting the shape of the solution. To 

fully specify the solution of this equation, an initial condition must be imposed, for example, at 𝑡 = 0 

such as: 

𝑓(𝑡 = 0) = 0.5 

The General Equation is:  

𝑓 =
𝑒𝑅𝑡

𝑒𝑅𝑡 + 1
=

𝑒𝑅𝑡 ⋅ 𝑒−𝑅𝑡

(𝑒𝑅𝑡 + 1)𝑒−𝑅𝑡
=

1

1 + 𝑒−𝑅𝑡
 

Utilizing Python code, results demonstrate efficient convergence in replicating the analytical solution for 

a simple differential equation. The Adam optimizer with a learning rate of 0.1 and 100 epochs suffices 

to achieve near-perfect replication of the analytical result for a specified maximum growth rate,              

𝑅 = 0.50. 

 

Figure 2        Exact solution with an initial value 𝑓(𝑡 = 0) = 0.5 and at 𝑅 = 0.5 

 

Figure 2         The Loss Graph Over 100 epochs 

 While this study successfully solves a simple one-dimensional problem, achieving convergence 

for more complex equations poses challenges. Techniques like domain decomposition and smart 

weighting of loss contributions are crucial for tackling time-dependent and multidimensional problems 

effectively. 

 

Conclusion 

The exploration of derivative computation within computer programs reveals significant advancements 

over traditional methods. The study categorizes derivative computation into four primary methods: 
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manual derivation and coding, numerical differentiation using finite difference approximations, symbolic 

differentiation, and automatic differentiation (AD). 

 Manual differentiation, though historically crucial, is labour-intensive and prone to error, 

especially as model complexity increases. Numerical differentiation offers simplicity but at the cost of 

accuracy and stability. Symbolic differentiation, while precise, often produces overly complex 

expressions that can be difficult to interpret and implement. 

 Automatic differentiation, leveraging the chain rule of calculus, stands out for its efficiency and 

accuracy. It integrates seamlessly with modern programming languages and libraries, making it 

particularly suitable for gradient-based optimization in machine learning. AD's ability to compute 

derivatives numerically during code execution has made it an essential tool in the development of 

scalable and precise machine-learning models. 

 The implementation of AD in neural networks, particularly through algorithms like 

backpropagation, has demonstrated significant potential in improving the efficiency, accuracy, and 

scalability of machine-learning models. The transition from manual and symbolic differentiation to AD 

marks a pivotal evolution in computational methods, reflecting a broader trend towards automation and 

increased computational efficiency in the field of machine learning 
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