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Abstract 

The Poisson equation frequently emerges in many fields of science and engineering. Given the rarity 

of exact solutions, numerical approaches like the Finite Difference Method (FDM) and Finite Element 

Method (FEM) are crucial. This paper provides a comprehensive comparison of FDM and FEM in 

solving the 2D Poisson equation for heat transfer problems. Both methods are implemented in Python, 

focusing on their accuracy, computational efficiency, and suitability for different geometries and 

boundary conditions. Results found that FEM shows more accurate adaptability while FDM shows 

efficiency in handling simpler and structured problem programming but faces less accuracy than FEM. 

The choice of method should be tailored to the specific problem requirements. The development of 

Python code increases the practical applicability of this method, facilitating further advances in 

numerical analysis and heat transfer simulation. 

Keywords: 2D Poisson equation; Finite Difference Method (FDM); Finite Element Method (FEM); 

numerical analysis 

 

1. Introduction 

Heat transfer is a fundamental process involving the exchange of energy between bodies due to 

temperature differences [1]. This exchange can occur through conduction, convection, and radiation. 

Although the mechanisms and laws governing the three modes of heat transfer are quite different, all 

three modes can occur during one process. When there is a temperature difference between two 

bodies, energy is transferred from the hotter object to the colder object, and this transfer only occurs in 

the direction of decreasing temperature. An important industrial device to enable the transfer of heat 

between fluids is called a heat exchanger [2]. When molecules come into contact, heat is transferred 

through the material, while radiation describes the transfer of energy through electromagnetic waves, 

such as light [3] 

Partial Differential Equations (PDEs) play a crucial role in describing various natural 

phenomena, including heat transfer. Industries such as energy, transportation and manufacturing rely 

heavily on heat transfer professionals to optimize processes and systems [4]. Historically, researchers 

have tackled PDE problems through a combination of experimental, analytical, and numerical 

approaches, by making comparisons between results and exact values while carefully evaluating errors 

in approximate solutions. Numerical analysis is a branch of mathematics that deals with creating 

efficient methods for obtaining numerical solutions to difficult mathematical problems. Most of the 

mathematical problems that arise in science and engineering are very hard and sometimes impossible 

to solve exactly [5]. 

Numerical analysis is essential for solving complex mathematical problems in science and 

engineering. An important application of numerical techniques is in dealing with PDE problems related 

to heat transfer. The Finite Difference Method (FDM) and the Finite Element Method (FEM) are two 

commonly used numerical approaches for heat transfer calculations. These methods are often 

compared by explaining their fundamentals and applying them to common heat transfer problems. In 

general, it is noted that both methods are clearly superior, and in many cases, the choice depends more 
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on the state of the problem to be solved. FEM has emerged as the most important numerical technique, 

known for its adaptability in addressing engineering and mathematical physics challenges [6]. 

This research focuses on developing numerical solutions for the two-dimensional (2D) Poisson 

equation, a key element in characterizing heat flow and distribution in various applications. Specifically, 

this study aims to compare FEM and FDM in dealing with the 2D Poisson equation. Python was chosen 

as the computational tool because of its robust capabilities, offering reliable software tools to handle 

the complexity of the problem. The research aims to provide valuable insights into the strengths and 

limitations of both methods in heat transfer simulation, thereby improving the understanding and 

application of numerical techniques in solving complex 2D Poisson equations. 

 

2. Literature Review 

 

2.1 Heat Transfer 

High precision in manufacturing requires accurate thermal modelling, as highlighted by [7]. Surface 

roughness affects contact heat transfer by restricting heat flow. Interfacial heat transfer between solids 

in contact is affected by temperature, pressure, surface texture, and material properties [8]. Modelling 

measures temperature distribution and heat flow, with jet escape enhancing local transfer [9]. Although 

heat transfer techniques can reduce thermal resistance and enable energy recovery, they often cause 

pressure drop. Heat conduction depends on a temperature gradient, flowing from higher temperatures 

to lower temperatures [10]. 

 

2.2 2D Steady-State Heat Conduction 

Heat conduction involves solving the heat equation in a given domain, with boundary conditions being 

crucial [11]. While exact solutions are attainable for regular-shaped domains, irregular-shaped domains 

pose challenges, leading to the use of numerical schemes like finite difference, finite element, and finite 

volume methods [12]. The Laplace equation is often utilized in two-dimensional steady-state heat 

transfer, where the temperature distribution in a body can be obtained by solving this equation. 

 

Consider the two-dimensional steady state heat transfer, where the Laplace equation can be utilized 

as: 

 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑄 = 0 (1) 

 

Where T = temperature, Q = heat source, and k = constant 

Efficient formulas for rectangular domains help in solving complex problems by transforming them into 

simpler geometries [13]. 

 

2.3 Poisson Equation 

The Poisson equation is a common elliptical PDE, is crucial in fields like heat conduction, 

incompressible flows, electromagnetics, and porous media flows, often involving irregular solution 

domains that need accurate discretization [13]. The 2D Poisson equation, 

 

 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= −𝑓(𝑥, 𝑦); 𝑥, 𝑦 ∈ Ω (2) 

 

describes the spatial distribution of a scalar field 𝑢(𝑥, 𝑦) in a region Ω , with 𝑓(𝑥, 𝑦) representing a source 

or sink term. This equation applies to various domain shapes and boundary conditions, similar to the 

Laplace equation in heat transfer problems [14]. Numerical methods such as the finite difference 

method (FDM) replace continuous derivatives with discrete operators, offering intuitive solutions but 

struggling with complex geometries. The finite element method (FEM) is more effective for arbitrary 

geometries [15]. 
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2.4 Finite Element Method (FEM) 

FEM is a widely used numerical technique for solving engineering physics and mathematical problems 

governed by differential equations [16]. The FEM process involves identifying the governing PDE, 

transforming it into a weak form, and solving the finite element equation. A notable application is the 

modeling of the static performance of aerostatic thrust bearings. [17] used FEM for fluid-structure 

interactions, analyzed stress distributions and built 2D models of thrust plates, demonstrating the 

versatility of FEM in addressing complex engineering challenges. 

 

2.5 Finite Difference Method (FDM) 

FDM is a versatile numerical technique widely used to solve differential equations in engineering. [18] 

state that the Taylor series expansion for an irregular grid around a point can be applied to any 

sufficiently differentiable function, leading to a set of linear equations. By expressing this for each node 

in the mesh, derive the set of linear equations, 

 

 [𝐴]{𝐷𝑓} − {𝑓} = {0} (3) 

where, 

 [𝐴] =

[
 
 
 
 
 
 ℎ1 𝑘1

ℎ1
2

2

𝑘1
2

2
ℎ1𝑘1

ℎ2 ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

ℎ𝑚 𝑘𝑚

ℎ𝑚
2
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𝑘𝑚
2

2
ℎ𝑚𝑘𝑚]

 
 
 
 
 
 

 (4) 

 

 {𝑓}𝑇 = {𝑓1 − 𝑓0, 𝑓2 − 𝑓0, … , 𝑓𝑚 − 𝑓0} (5) 

 

where the five unknown derivatives at the point ( 𝑥0 , 𝑦0) are {𝐷𝑓}𝑇 = {
𝜕𝑓0

𝜕𝑥
,
𝜕𝑓0

𝜕𝑦
,
𝜕2𝑓0

𝜕𝑥2 ,
𝜕2𝑓0

𝜕𝑦2 ,
𝜕2𝑓0

𝜕𝑥𝜕𝑥
} .  

[19] noted that FDM requires a higher mesh density for accuracy due to its step boundary 

approximation, which poses challenges with irregular shapes. In contrast, FEM allows variable element 

sizes, facilitates grid adjustment and handles complex geometries better [20]. Although FDM is memory 

efficient and can solve simple problems with handheld calculators, its explicit formulation requires small 

time steps for stability, increasing computation time. 

 

3. Methodology 

 

3.1 Mathematical Model 

In this research, the two-dimensional heat equation is used to approximate temperature distribution due 

to heat conduction. The focus is exclusively on conduction, a widely recognized mode of heat transfer 

[21]. Consider a differential control volume with a constant thickness 𝜏 in the z-direction and a heat 

generation rate 𝑄 (W/m³). The relationship between heat rate and heat flux is crucial, as illustrated in 

Figure 3.1. The heat rate entering and exiting the control volume can be expressed as follows: 

 

 
Figure (1) 

Figure 1 show a differential control volume for heat transfer model. 

● Q
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 𝑞𝑥𝜏𝑑𝑦 + 𝑞𝑦𝜏𝑑𝑥 + 𝑄𝜏𝑑𝑥𝑑𝑦 = (𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥) 𝜏𝑑𝑦 + (𝑞𝑦 +

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑦) 𝜏𝑑𝑥 (6) 

   

Simplifying the above equation to obtain, 

 

 𝑄 =
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
 (7) 

 

 with the heat flux in the x and y directions given by Fourier's law: 

 

 𝑞𝑥 = −𝑘 (
𝜕𝑇

𝜕𝑥 
)    and  𝑞𝑦 = −𝑘 (

𝜕𝑇

𝜕𝑦 
) (8) 

 

Substituting these into the heat conduction equation and get: 

 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑄 = 0 (9) 

 

3.2 Finite Element Methods 

Consider the strong form of the 2D steady-state heat conduction (Poisson) equation,  

 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑄 = 0 (10) 

 

where 𝑇 is the temperature, 𝑘 is the thermal conductivity, and 𝑄 is the internal heat source. Then, 

convert the strong form to the weak form, multiply by a test function 𝜙 and integrate over the domain 𝐴: 

 

 ∬ 𝜙 [
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
)] 𝑑𝐴 + ∬ 𝜙𝑄𝑑𝐴 = ∬0𝑑𝐴

𝐴

= 0
𝐴𝐴

 (11) 

 

Then, express the weak form of the 2D steady-state heat conduction equation with boundary conditions, 

specifically including both Neumann (specified heat flux) and convective (heat transfer due to 

convection). So, the weak form with boundary conditions is: 

 

 −∫ 𝜙𝑞0𝑑𝑆 − ∫ 𝜙ℎ(𝑇 − 𝑇∞)𝑑𝑆
𝑆𝑐𝑆𝑞

− ∬ (𝑘
𝜕𝜙

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝑘

𝜕𝜙

𝜕𝑦

𝜕𝑇

𝜕𝑦
) 𝑑𝐴 + ∬𝜙𝑄𝑑𝐴 = 0 

𝐴𝐴

 (12) 

 

Discretize the domain by divide the domain 𝐴. Represent the temperature 𝑇 and test function 𝜙 in terms 

of shape functions 𝑁𝑖 where 𝑇 ≈ ∑ 𝑁𝑗𝑇𝑗  
𝑁
𝑗=1 and 𝜙 = 𝑁𝑖. 

Thus, assemble the global stiffness matrix 𝑲, heat transfer matrix 𝒉, and the vectors 𝒓𝑸, 𝒓𝒒, and 𝒓∞.  

 

 ∑(ℎ𝑖,𝑗 + 𝑘𝑖,𝑗)𝑇𝑗

𝑁

𝑗

= 𝑟𝑄,𝑖 − 𝑟𝑞,𝑖 + 𝑟∞,𝑖 → (𝒉 + 𝑲)𝑻 = 𝒓𝑸 + 𝒓𝒒 + 𝒓∞ (13) 

 

Solve the linear system for the nodal temperatures 𝑇𝑗. 
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3.3 Finite Difference Methods 

Finite difference method aims to approximate the values of the continuous function 𝑓(𝑥, 𝑦) on a set of 

discrete points in (𝑥, 𝑦) plane. In this method, the Poisson equation is discretized using the central 

difference method. Consider the Poisson equation,  

 

 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= −𝑓(𝑥, 𝑦) (14) 

 

where u is a scalar field and 𝑓(𝑥, 𝑦) is a function of a source or sink. Then, using the second-order-

center-difference formulas, equation (14) can be discretized as follows: 

 

 
𝑢𝑖+1

𝑗
− 2𝑢𝑖

𝑗
+ 𝑢𝑖−1

𝑗

∆𝑥2
+

𝑢𝑖
𝑗+1

− 2𝑢𝑖
𝑗
+ 𝑢𝑖

𝑗−1

∆𝑦2
= −𝑓𝑖

𝑗
 (15) 

 

For this research, it is focus on Dirichlet boundary condition where 𝑢(𝑥𝑖 , 𝑦𝑗) =constant. Next, to solve 

for 𝑢 at all grid points (𝑖, 𝑗), compile the discrete equations into a matrix equation: 

 

 

[
 
 
 
𝐴0,0 𝐴0,1 ⋯ 𝐴0,𝑁

𝐴1,0 𝐴1,1 ⋯ 𝐴1,𝑁

⋮ ⋮ ⋱ ⋮
𝐴𝑁,0 𝐴𝑁,1 ⋯ 𝐴𝑁,𝑁]

 
 
 
[

𝑢0,0

𝑢1,0

⋮
𝑢𝑁,𝑁

] =

[
 
 
 
𝑓0,0

𝑓1,0

⋮
𝑓𝑁,𝑁]

 
 
 

 (16) 

 

Here, 𝐴𝑖,𝑗  represents the coefficients from the discretized equation. By solving this system of linear 

equations, the approximations for 𝑢 at each discrete point (𝑖, 𝑗) can be obtained. 

 

4. Results and discussion 

This research focuses on solving the 2D Poisson equation using FEM and FDM. These numerical 

methods are important for handling complex geometries and boundary conditions where analytical 

solutions are impractical. This method is implemented using PyCharm Edu 2022.2.2. Then, the 

solution is compared with the exact solution to evaluate its accuracy. This chapter details the numerical 

analysis and error evaluation, providing insight into the effectiveness of each method. 

 

4.1 Numerical Problem  

Consider the 2D Poisson equation representing a steady-state heat conduction problem: 

 

 
𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑥2
= −𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω = (0,1) × (0,1), (17) 

 

where 𝑢 is an unknown scalar function of 𝑥 and 𝑦, and 𝑓 is a given function 𝑓(𝑥, 𝑦). The boundary 

conditions are specified as follows: 

 

 𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛿Ω − 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 0 ≤ 𝑥 ≤ 1, , 0 ≤ 𝑦 ≤ 1.  (18) 

𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 0. 

 

The analytical solution for this problem is given by, 

 

 𝑢(𝑥, 𝑦) = 𝑒−𝑥 ⋅ 𝑒−2𝑦 ⋅ 𝑥(1 − 𝑥) ⋅ 𝑦(1 − 𝑦) (19) 

 

The right-hand side 𝑓(𝑥, 𝑦) of equation (17): 

 

 𝑓(𝑥, 𝑦) = (𝑥2 − 5𝑥 + 4)(𝑦 − 1)(𝑦𝑒−𝑥−2𝑦 ) + 2(𝑥 − 1)𝑥(2𝑦2 − 6𝑦 + 3)(𝑒−𝑥−2𝑦 )  (20) 
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4.2 Numerical Result for Finite Element Method 
The numerical solution of the 2D Poisson equation using the Finite Element Method (FEM) is 

represented visually in the figures. These figures provide insight into the accuracy of the approximation 

and the error distribution compared to the exact analytical solution. 

 

 

 
Figure (2) 

Figure 2 shows the numerical approximation of 𝑢(𝑥, 𝑦) obtained using FEM by solving the system 

of equations formed by the stiffness matrix and boundary conditions. It visually represents how 

𝑢(𝑥, 𝑦) changes over the domain. 

 

 

 
Figure (3) 

Figure 3 presents the exact analytical solution of 𝑢(𝑥, 𝑦) =  𝑥(1 − 𝑥) ⋅  𝑦(1 − 𝑦) for the 2D Poisson 

equation problem. 

 

The error distribution between the exact and approximate solutions in FEM is given by  

 

𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑦) = 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥, 𝑦) − 𝑢𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦) 

 

This measures the difference between the FEM's numerical solution and the known exact solution at 

each point (𝑥, 𝑦). Analyzing this error distribution helps identify where the numerical solution deviates 

and guides improvements in the FEM model for better accuracy. 
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4.3 Numerical Result for Finite Difference Method 
Similar to the numerical results for the Finite Element Method (FEM), the numerical solution of the 2D 

Poisson equation using the Finite Difference Method (FDM) is represented visually in the figure, 

 

 
Figure (4) 

Figure 4 visually represents the finite difference grid and the numerical approximation process. It 

shows how the domain is discretized into a grid and how each grid point is updated based on the 

finite difference approximation. 

 

Similar to FEM, the error distribution in the Finite Difference Method (FDM) also be calculated to helps 

identify where the numerical solution deviates from the exact solution, guiding improvements in the 

FDM model for enhanced accuracy. By examining the error distribution, it is possible to identify regions 

where the numerical method requires refinement, thereby improving the precision and reliability of the 

solutions. 

 

4.4 Comparison of Solutions Between FEM and FDM for a 2D Poisson Equation 

Each method for FEM and FDM discretizes the domain and approximates the solution differently, 

leading to varying degrees of accuracy and computational efficiency. 

 
Figure (5) 

Figure 5 shows the layout of the nodes in a 5×5 grid for a 2D geometry problem used to solve the 

Poisson equation. This figure is essential for visualizing the discretization of the domain for both 

the Finite Element Method (FEM) and the Finite Difference Method (FDM). 

 

The comparison between the exact and approximate solutions, along with the error, using the Finite 

Element Method (FEM) and Finite Difference Method (FDM) are presented in the table below: 

 

0.75

0.5

0.25

0
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Table 1: Comparison Solution of FEM and FDM 

Node Approximate 

Solution for FEM 

Approximate 

Solution for FDM 

Exact Solution Error for FEM 

solution 

Error for FDM 

solution 

𝑃0 0 0 0 0 0 

𝑃1 0 1.39E-17 0 0 1.39E-17 

𝑃2 0 8.33E-17 0 0 8.33E-17 

𝑃3 0 -2.08E-17 0 0 2.08E-17 

𝑃4 0 0 0 0 0 

𝑃5 0 0 0 0 0 

𝑃6 0.018157 0.015483 0.016607 0.00155 0.001124 

𝑃7 0.018336 0.015928 0.017244 0.001091 0.001317 

𝑃8 0.010574 0.009238 0.010072 0.000502 0.000835 

𝑃9 0 0 0 0 0 

𝑃10 0 6.94E-18 0 0 6.94E-18 

𝑃11 0.014164 0.012446 0.01343 0.000734 0.000984 

𝑃12 0.014676 0.012763 0.013946 0.000731 0.001182 

𝑃13 0.008534 0.007384 0.008146 0.000388 0.000762 

𝑃14 0 -4.77E-18 0 0 4.77E-18 

𝑃15 0 -8.67E-18 0 0 8.67E-18 

𝑃16 0.006254 0.005589 0.006109 0.000145 0.000521 

𝑃17 0.00658 0.005708 0.006344 0.000236 0.000635 

𝑃18 0.003862 0.003292 0.003705 0.000157 0.000413 

𝑃19 0 0 0 0 0 

𝑃20 0 0 0 0 0 

𝑃21 0 0 0 0 0 

𝑃22 0 0 0 0 0 

𝑃23 0 0 0 0 0 

𝑃24 0 0 0 0 0 

 

The exact solution values at each node represent the theoretically perfect results. The approximate 

FEM solution closely matches the exact solution with a much lower error compared to the FDM solution, 

where FDM shows a slightly larger error, indicating less accuracy in the approximation for this problem. 

The choice of method can significantly affect the accuracy of the solution, and FEM seems to be the 

better choice for problems with this particular configuration and boundary conditions. 

 

Conclusion 

This study examines Finite Element Method (FEM) and Finite Difference Method (FDM) to solve the 2D 

Poisson equation using Python. The results show the successful implementation of both methods, with 

FEM showing higher accuracy, while FDM is efficient for computational task. This study highlights 

Python's effectiveness but suggests improvements in programming efficiency and diversity of 

examples. Future research could explore different boundary conditions (Neumann, Robin) to improve 

accuracy. Comparative analysis with other methods such as the Finite Volume Method (FVM) can be 

used to offer further insight into the efficient solution of the 2D Poisson equation.  
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