Academic Handbook 2016/2017

http://science.utm.my

Faculty • of • Science

Edition: 2016/2017 © All Rights Reserved

Attention

All information in this version of the guide are true at time of publishing. The Faculty of Science reserves the right to make amendments to the guide as needed without prior announcement. This Academic Guide is a reference for students from the 2016/2017 Session intake and remains valid until the end of their study. The synopses of courses offered by the Faculty of Science are only available in English, as per the language used in their instruction.

For further information, please contact:

Dean Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru JOHOR DARUL TAKZIM

Telephone No.: 07 - 553 4000 Fax No.: 07 - 5566162 E-mail: dekan.fs@utm.my Website: <u>science.utm.my</u>

Table of Contents

No.	Contents	Page
1.	Dean's Foreword	4
2.	Faculty of Science's Management Team	5
3.	Background of Universiti Teknologi Malaysia	8
4.	Philosophy, Vision, Mission and Motto of UTM	11
5.	The Chronological Development of the Faculty of Science	12
6.	Vision, Mission, Slogan and Objectives of the Faculty of Science	15
7.	Business, Statement of Opportunity, Core Competencies, Clients Charter	16
8.	Organizational Structure, Administration & Management	18
9.	Study Programs and Entrance Requirements	19
10.	Course Structure and General Course Handling	20
11.	Program Specifications	
	11.1. Bachelor of Science (Chemistry) (SSCA)	24
	11.2. Bachelor of Science (Industrial Chemistry) (SSCC)	44
	11.3. Bachelor of Science (Mathematics) (SSCE)	63
	11.4. Bachelor of Science (Industrial Mathematics) (SSCM)	80
	11.5. Bachelor of Science (Physics) (SSCZ)	97
	11.6. Bachelor of Science (Industrial Physics) (SSCF)	116
12.	Course Synopses	
	12.1. Synopses of Chemistry Courses	137
	12.2. Synopses of Mathematical Sciences Courses	154
	12.3. Synopses of Physics Courses	168
13.	List of Faculty's Academic Staff	191

http://science.utm. my

Dean's Foreword

السلام عليكم ورحمة الله وبركاته

Salam 1 Malaysia

The utmost gratitude to Allah S.W.T. for enabling the successful production of this Faculty of Science Academic Guide.

On this occasion, I wish to express my sincerest congratulations and a well done to students who have been successfully chosen for study programs offered by the Faculty of Science in particular and UTM in general, for the 2016/2017 Academic Session.

This Academic Guide contains basic information regarding the Faculty, its curriculum and course synopses for the Bachelor of Science Program, applicable for students admitted in the 2016/2017 session and onward until graduation. Students admitted for Semester I of the 2016/2017 Session constitutes the sixth group of students following the latest four-year study curriculum. This Guide also describes the programs and courses offered at the Faculty of Science, the semester system and the handling of aforementioned study programs.

It is hoped this Academic Guide can provide necessary information, especially to students, about the management of the Faculty, the procedures of its programs and the study courses offered. The Guide will be useful for students as part of a learning plan for their studies, as well as being a reference for understanding the structure of courses or programs run by the Faculty of Science. In addition, this Academic Guide explains the academic advisory system so that students and their assigned Academic Advisors may understand their respective roles more effectively.

On behalf of the Faculty, I would take this opportunity to express thanks to all involved in the production of this 2016/2017 Academic Guide.

Thank you. Wassalam.

PROFESSOR DR. NORSARAHAIDA SAIDINA AMIN

Dean Faculty of Science, UTM http://science.utm. my ...where great minds are nurtured

Faculty of Science's Management Team

Dean

Professor Dr. Norsarahaida Saidina Amin B. Sc. (Hons) (Adelaide), M. Sc. (Northwestern), Ph.D (East Anglia)

Deputy Dean (Academic)

Professor Dr. Mohd Nor Mohamad B.Sc. (Hons) (UKM), M.Sc., Ph.D (Newcastle), APMM, C.Math MIMA

Deputy Dean (Research, Innovation, Community & Netwrok) Professor Dr. Wan Azelee Wan Abu Bakar B.Sc. (Hons) (UKM), M.Sc. (Herriot-Watt) Ph.D (Nottingham), AMIC

Research Manager Associate Professor Dr. Lee Siew Ling B.Sc, (Hons), PhD (UPM)

Facility and IT Manager Dr. Abd Khamim Ismail B.Sc. (UTM), M.Sc. (UPM), Ph.D (Newcastle)

Head, Department of Chemistry

Associate Professor Dr. Zaiton Abdul Majid B.Sc.(Hons), M.Sc. (Western Illinois), Ph.D (Malaya), MMIC

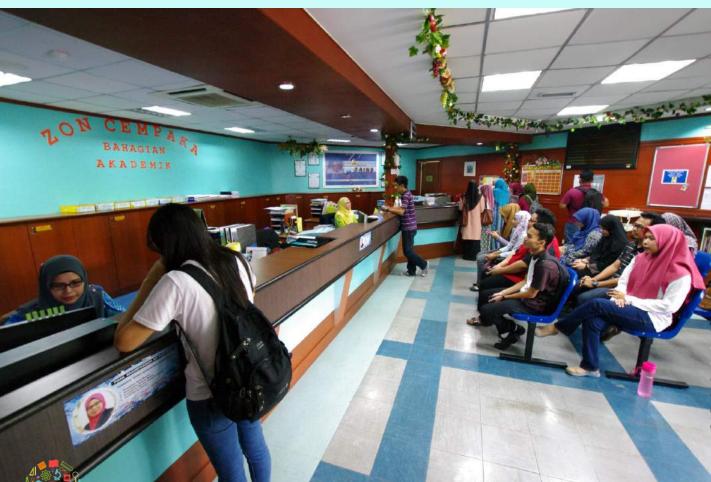
Head, Department of Physics

Associate Professor Dr. Wan Muhamad Saridan Wan Hassan B.Sc. Ed. (Hons) (UTM), M.Sc. (California), Ph.D (Aberdeen)

Head, Department of Mathematical Sciences

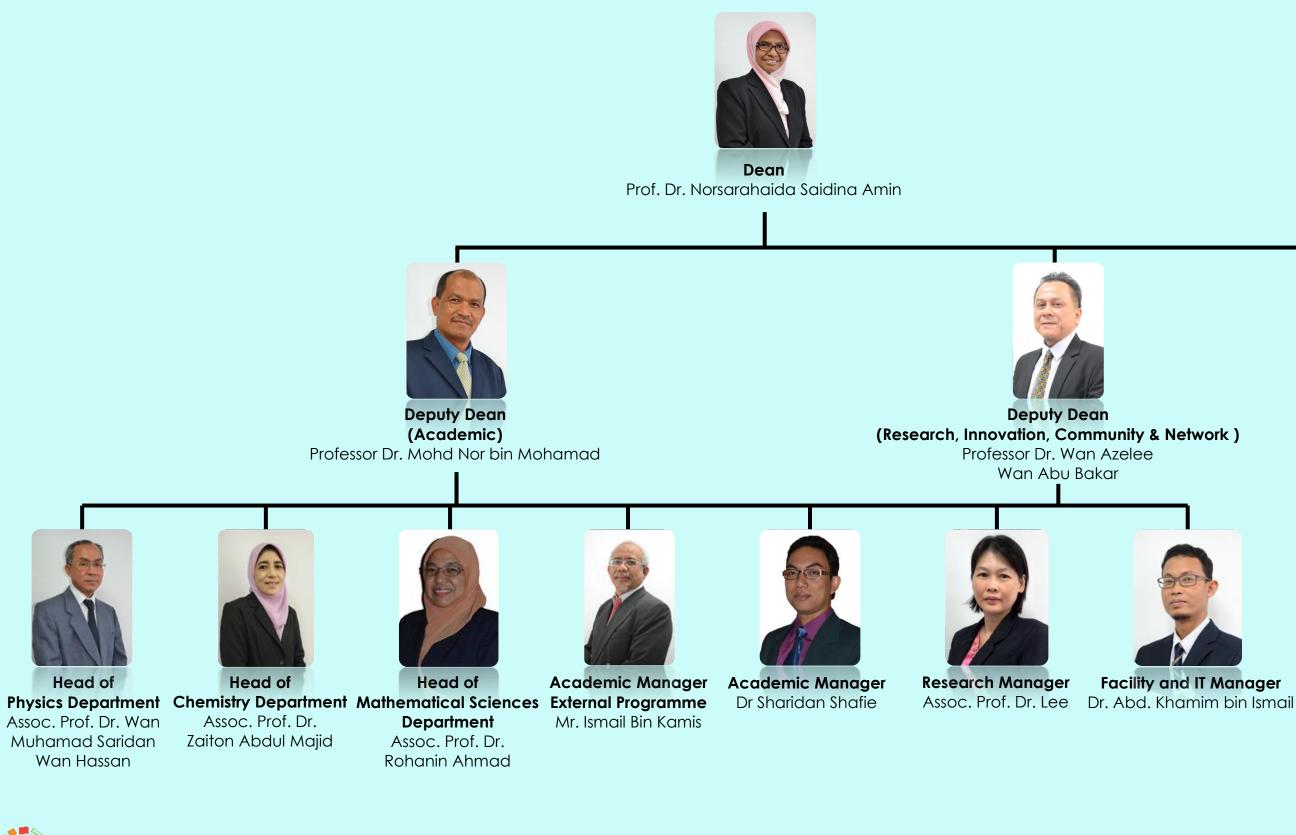
Associate Professor Dr. Rohanin Ahmad B.Sc., M.Sc. (Indiana State), Ph.D (UTM)

http://science.utm. my ...where great minds are nurtured



Academic Manager Dr. Sharidan Shafie B.Sc., M.Sc., Ph.D (UTM)

Academic Manager (External Programs) Encik Ismail Kamis B.Sc., M.Sc. (North Carolina)


Deputy Registrar Kamsaini bin Kamaruddin Diploma in Hotel Mgmt (UiTM) Bachelor in Corporate Administrstion (Company Secretary) (UiTM) Master in Technology Mgmt (HCD) (UTM)

Assistant Registrar Encik Kiflee Jimpi B.Sc. (Comp. Science) (UTM)

http://science.utm. my ...where great minds are nurtured

Head of

Wan Hassan

Faculty of Science Organizational Chart

7

Organizational Chart

Deputy Registrar Mr. Kamsaini bin Kamaruddin

Assistant Registra Mr. Kiflee Jimpi

Background of Universiti Teknologi Malaysia

Universiti Teknologi Malaysia (UTM) was first established on the 14th of March 1972 under the name of Institut Teknologi Kebangsaan (ITK). On the 1st of April 1975, the name was changed to Universiti Teknologi Malaysia. Although UTM was considered as a new university then, as a technical instituition, it had actually existed since 1925 by the name of Kuala Lumpur Technical School. The School initially trained technicians for the Public Works Department and was later opened to other civil servants in 1930.

In 1946, the government upgraded the status of the Technical School to a Technical College. However, the construction of the college only started in 1951 at Jalan Gurney, Kuala Lumpur and completed in 1955.

In 1960, the Technical College began to offer engineering courses on a professional level. Students pursuing these courses were required to sit for professional examinations conducted by the Institution of Civil Engineers, Institution of Mechanical Engineers and the Institution of Electrical Engineers, United Kingdom.

http://science.utm.my ...where great minds are nurtured

Degree courses were first offered in 1969, when the Pla nning Committee for Higher Learning recognized the college as a university-level technical institute. On the 14th of March 1972, His Majesty Yang Di Pertuan Agong proclaimed the establishment of Institut Teknologi Kebangsaan, which was later renamed Universiti Teknologi Malaysia. The university was recognized as a technical university focusing on technology, with Bahasa Malaysia as the medium of instruction.

Currently, UTM's main campus is located on a land spanning 1,120 hectares in Skudai, Johor. It is situated about 18 km from Johor Bahru City centre. The branch campus is located at UTM Internaltional Campus, Jalan Semarak, Kuala Lumpur. The move from the original campus at Jalan Semarak, Kuala Lumpur, to the main campus in Skudai began in 1985 and proceeded in stages. At present, the Skudai campus houses 15 faculties and 5 faculty-level schools in UTM International Campus, Kuala Lumpur, as follows:

- Faculty of Science
- Faculty of Civil Engineering
- Faculty of Mechanical Engineering
- Faculty of Geoinformation and Real Estate
- Faculty of Built Environment
- Faculty of Management
- Faculty of Education

http://science.utm.my

- Faculty of Electrical Engineering
- Faculty of Computing
- Faculty of Chemical and Energy Engineering
- Faculty of Biosciences and Medical Engineering
- Faculty of Biomedical & Health Science Engineering
- Faculty of Petroleum and Renewable Energy Engineering
- Faculty of Islamic Civilization
- Language Academy
- Malaysia-Japan International Institute Of Technology
- UTM Razak School of Engineering and Advanced Technology (UTM Razak School)
- The International Business School (IBS)
- Perdana School of Science, Technology and Innovation Policy (UTM Perdana School)
- Advanced Informatics School (AIS)

In June 2010, UTM received recognition and status as a Research University (RU).

http://science.utm.my ...where great minds are nurtured

Philosophy, Vision, Mission and Motto of Universiti Teknologi Malaysia

PHILOSOPHY

The divine law of Allah is the foundation for science and technology. UTM strives with total and unified effort to attain excellence in science and technology for universal peace and prosperity in accordance with His will.

VISION

To be recognized as a world-class centre of academic and technological excellence.

MISSION

To be a leader in the development of human capital and innovative technologies that will contribute to the nation's wealth creation.

MOTTO

"KERANA TUHAN UNTUK MANUSIA" In the Name of God for Mankind.

http://science.utm.my ...where great minds are nurtured

The Chronological Development of Faculty of Science

1972		The Science Service Unit teachings of Physics, Chemistry and Mathematics for the Engineering Faculties of Institut Teknologi Kebangsaan (ITK). The Centre for Science and Humanities Studies, consisting of four departments (Physics, Chemistry, Mathematics and Humanities) was established. A Diploma of Science and Education was initiated in cooperation with the Ministry of Education, Malaysia.
1978	þ	The split of the Centre of Science and Humanities Studies resulted in the formation of the Centre of Science Studies (PPS), which consisted of 3 Departments (Physics, Chemistry and Mathematics).
1978	Q	The Diploma of Science with Education was renamed as the Integrated Science with Education Course (ISP).
1979	Q	Enrolment of the first batch of undergraduate students for the Bachelor of Science with Education program (SSP).
1980	Q	The Department of Computer Science was establised and placed under PPS.
1981	Q	The Centre for Science Studies (PPS) was upgraded and renamed as the Faculty of Science (FS).
1982	¢	The Education Department and the Department of Technical Science were transferred from the Centre of Humanities Studies into the Faculty of Science.
1983	Q	The Bachelor of Computer Science Programme was initiated.
1984	¢	The Department of Computer Science separated from the Faculty of Science to form an independent faculty.
1986	Q	The Bachelor of Science in Technology with Education (Civil, Electrical, Mechanical) was established.

http://science.utm.my ...where great minds are nurtured 12

The Bachelor of Industrial Science (SSI) course was started. 1987 The programmes offered were Industrial Chemistry, Industrial Physics and Industrial Mathematics. The Faculty of Science moved to Skudai. 1988 The Bachelor of Computer Science with Education (SPK) was initiated, followed by the Diploma in Education. The Faculty officially started its postgraduate program in 1989 Chemistry, Physics and Mathematics. The Faculty started the Bachelor of Science in Technology 1992 with Education (Living Skills) course. The Department of Education and the Department of Science and Technical Education were dissolved following 1994 the establishment of the Faculty of Education. Three departments remained in the Faculty of Science: The Deaprtments of Chemistry, Physics and Mathematics. The Faculty started offering the Bachelor of Industrial 1997 Science (Biology) programme. The Faculty started offering the Bachelor of Industrial 1998 Science (Material Physics) programme. The Faculty started offering the Bachelor of Industrial 1999 Science (Health Physics) programme. 2000 The Biology Department was established in the Faculty. The Faculty of Science began offering a special 2002 programme known as the Excellent Scientists Programme (Pure Physics, Chemistry and Mathematics). The enrolment of students for the Undergraduate 2003 Programme was limited to only post-matriculation, post-STPM and diploma holders only. The Faculty began offering Undergraduate Degree 2005 Programmes in Pure Sciences (Biology, Chemistry, Physics and Mathematics).

http://science.utm.my ...where great minds are nurtured

2012

Enrolment of students for the Bachelor of Science (Material Physics) and Bachelor of Science (Health Physics) was stopped.

The Department of Mathematics was renamed the Department of Mathematical Sciences.

http://science.utm.my ...where great minds are nurtured 14

Vision, Mission, Slogan and Objectives of the Faculty

VISION

To be a world-renowned Faculty in the advancement of Science and Mathematics.

MISSION

To be a leader in the development of human capital and technology through the generation and dissemination of scientific and mathematical knowledge by quality teaching and learning, innovative research and scholarly publications for the well-being of mankind and the environment.

SLOGAN

...where great minds are nurtured.

OBJECTIVES

- To provide quality academic programmes in Science and Mathematics, meeting both local and global education needs.
- To facilitate the dissemination of knowledge in Science and Mathematics through innovative and effective teaching and learning.
- To produce competent and versatile graduates guided by high moral and ethical values.
- To undertake frontier and transformative research and development in Biology, Chemistry, Physics, and Mathematics.
- To engage in interdisciplinary and collaborative research.
- To provide an environment conducive to the exchange of knowledge, views, and innovative ideas.
- To contribute to the advancement of knowledge through scholarly publications.
- To engage in science-based smart partnerships and global networking.
- To contribute to the generation of the nation's wealth through research and innovation.
- To contribute to the improvement of quality of life, protection of the environment and conservation of natural resources.

/science.utm.my ...where great minds are nurtured

Business, Statement of Opportunity, Core Competencies and Customer Charter

BUSINESS

To conduct teaching/learning, research and consultancy activities in the field of Science and Mathematics.

STATEMENT OF OPPORTUNITY

- 1. Capitalizing on the staff expertise in realizing a culture of intellectual excellence to attract high quality students.
- 2. Maximizing smart partnership and professional networking with public and private sectors to enhance research, students' internship, and graduate employability.
- 3. Optimizing the usage of state of the art facilities to conduct Faculty's programs, research activities, consultation work, and professional development programs.
- 4. Implementing market driven academic programs ensures quality graduates and employers satisfaction.
- 5. Support visionary leadership drives innovative and transformative ideas in achieving management excellence thus increasing Faculty's academic ranking.

CORE COMPETENCIES

- 1. Conducting quality teaching and learning in science and mathematics through creative and innovative techniques.
- 2. Designing science and mathematics based programs in line with local and global trends and needs.
- 3. Undertaking frontier research in science and mathematics.
- 4. Engaging in interdisciplinary and collaborative research.
- 5. Producing scholarly publications consistently.
- 6. Providing scientific consultancy and advisory services.

CUSTOMER CHARTER

The Faculty of Science is committed to:

- Design quality academic programmes which are market-driven, adaptable to the nation's needs and are able to inculcate ethical values to the students.
- 2. Fulfil academic duties with full responsibility and dedication in accordance with the standards, rules and regulations as stipulated by the University.
- 3. Execute fair and just assessment in the evaluation of students' academic performance.
- 4. Provide well-equipped laboratories and regularly maintained facilities conducive to laboratory work and research.
- 5. Provide professional guidance, supervision and efficient management in laboratory work and research.
- 6. Provide training and consultation towards the improvement of skills and professionalism.
- 7. Practise a friendly, open and caring attitude, always ready to provide necessary assistance related to the Faculty's core business.
- 8. Provide assistance within five (5) minutes of arrival to all clients at the Faculty's service counter.
- 9. Ensure a safe and healthy working environment in the faculty.

Organizational Structure, Administration & Management

The Faculty of Science is headed by a Dean, assisted by two Deputy Deans, three Heads of Departments, two Academic Managers, one Research Manager, one Facility and Information Technology Manager, one Deputy Registrar and one Assistant Registrar.

At present, the Faculty consists of three major divisions:-

- Physics Department
- Chemistry Department
- Mathematical Sciences Department

The Faculty of Science is the largest faculty in UTM in terms of the number of academic staff. Currently, the Faculty has 171 highly qualified and experienced academic staff, assissted by 112 dedicated and hardworking supporting staff.

In terms of facilities and equipments, the Faculty has 17 lecture rooms, 4 computer laboratories under the management of the Department of Mathematical Sciences, 27 laboratories/workshops in the Department of Physics, which are used for teaching and research, and 31 laboratories, which are used for teaching and scientific research projects, in the Department of Chemistry.

http://science.utm.my ...where great minds are nurtured

Study Programs and Admission Requirements

STUDY PROGRAMS AVAILABLE

The Faculty of Science offers six (6) study programs at undergraduate level as of the 2016/2017 Academic Session:

No.	Program Name	Program Code	Credits Norm to Graduate
1	Bachelor of Science (Chemistry)	SSCA	128
2	Bachelor of Science (Industrial Chemistry)	SSCC	128
3	Bachelor of Science (Mathematics)	SSCE	126
4	Bachelor of Science (Industrial Mathematics)	SSCM	129
5	Bachelor of Science (Physics)	SSCZ	129
6	Bachelor of Science (Industrial Physics)	SSCF	129

ENTRANCE REQUIREMENTS

Entrance into the Bachelor of Science programmes is based on the candidate's success in the 'Sijil Tinggi Pelajaran Malaysia (STPM), or 'Sijil Matrikulasi Kementerian Pelajaran Malaysia' or diploma, or the equivalent. The detailed entrance requirements can be obtained from the UTM's Prospectus or website (http://www.utm.my). Candidates with a certified diploma and other certified qualifications may be considered for credit transfer.

http://science.utm.my

Course Structure and General Course Handling

COURSE STRUCTURE

The Bachelor of Science curriculum was designed to provide relevant and up-todate combinations of core and elective subjects. The curriculum was devised with the intentions to strengthen the fundamentals of science and mathematics in the early stage of the course. Students must also undergo Industrial Training/Research Training for 10 weeks. Apart from that, the Bachelor of Industrial Science students are required to take three management subjects.

http://science.utm.my ...where great minds are nurtured

Credit distribution for the Bachelor of Science Program is summarized by the following tables:-

a) Bachelor of Science (Pure) Program:-

No	No Classification -		CZ	SSCA		SSCE	
		Credit	%	Credit	%	Credit	%
1	Fundamentals in Science and Mathematics	23	58.9	13	58.5	9	57.9
2	Program Core	53		62		64	
3	Program Electives	33	25.6	33	25.8	33	26.2
4	Compulsory University Courses Humanities Language Co-curriculum Entrepreneurship	10 6 2 2	15.5	10 6 2 2	15.7	10 6 2 2	15.9
	Total	129	100	128	100	126	100

b) Bachelor of Science (Industrial) Program:-

	Classification	SSCF		SSCC		SSCM	
No	Classification	Credit	%	Credit	%	Credit	%
1	Fundamentals in Science and Mathematics	20	58.9	13	58.5	9	58.9
2	Program Core	56		62		67	
3	Program Electives	33	25.6	33	25.8	33	25.6
4	Compulsory University Courses Humanities Language Co-curriculum Entrepreneurship	10 6 2 2	15.5	10 6 2 2	15.7	10 6 2 2	15.5
	Total	129	100	128	100	129	100

http://science.utm.my

GENERAL HANDLING OF COURSES

All studies for courses at the Bachelor Of Science level are run using a semester system, and for each Academic Year the new student intake occurs on Semester I. The minimum period of study for all programs being offered are 4 academic years (8 semesters). Students are required to complete the University's general courses consisting of subjects in the Humanities, English Language, Co-Curriculum and Entrepreneurship.

Additionally, final-year students must undertake one research study or Undergraduate Project (PSM) in a related field. They are required to submit a thesis based on such a research topic or project. Supervision of the PSM will be carried out according to schedule between students and academic staff assigned as PSM Supervisors from every Faculty Department. Students are required to undergo Industrial / Research Training (LI/LP) for a period of ten weeks, whether in the private or public sector, over the short semester in Year 3 of their study. The LI/LP experience aims to equip graduates with practical knowledge as well as exposing them to real working environments.

LI/LP Supervisors consisting of Faculty academic staf will make supervisory visits to each agency where Faculty students are assigned. The Faculty's supervisors then make a joint assessment with the agency's own supervisor in order to evaluate the performance of each student involved, before a Pass / Fail decision is recommended to the Industrial Training Committee of the Faculty of Science.

http://science.utm.my

Program • Specifications

Bachelor of Science(Chemistry)

Awarding Institution	Universiti Teknologi Malaysia
Teaching Institution	Universiti Teknologi Malaysia
Program Name	Bachelor of Science in Chemistry
Final Award	Bachelor of Science (Chemistry)
Program Code	TS16 (SSCA)
Professional or Statutory Body of	Malaysian Ministry of Higher
Accreditation	Education
Language(s) of Instruction	Bahasa Malaysia and English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-govern
(Franchise, self-govern, etc)	
Study Scheme	Full Time
(Full Time/Part Time)	
Study Duration	Minimum : 4 yrs
	Maximum : 6 yrs

T C C L	No. of Se	emesters	No. of weeks per semester	
Type of Semester	Full Time	Part Time	Full Time	Part Time
Normal	8	-	14	-
Short	-	-	-	-

Entry Requirement

Fulfills University requirements and the following program requirements:

STPM/ Matriculation/Science Foundation

Minimum CGPA of 2.80 and passed with Grade B in Chemistry and Grade B- in ONE (1) of the following subject: Biology/Mathematics/Physics.

http://science.utm.my

...where great minds are nurtured

24

Program Educational Objectives (PEO)

The objectives of Bachelor of Science in Chemistry are to provide the knowledge, skills, and attributes that should be achieved by the graduate for a successful carrier. The program is designed to:

- prepare graduates who are able to apply their knowledge and generate new knowledge in chemistry relevant to the nation development.
- educate graduates to conduct research to solve current and future issues for the development and betterment of the nation and mankind.
- train graduates who are able to apply their knowledge and skills in the planning, analysis, design and supervision of works related to the fundamental areas of chemistry.
- develop graduates who are technically competent in solving problems logically, analytically and creatively based on sound facts and ideas.
- train graduates to possess leadership, ethical and professional qualities contributing towards the development of the nation and mankind.
- prepare graduates who are able to work collectively in societies of diverse backgrounds to achieve common goals.
- train graduates who are able communicate effectively across a range of contacts and audiences.

http://science.utm.my

Program Learning Outcomes (PO)

Program Learning Outcomes	Intended Learning Outcomes	Teaching and Learning Methods	Assessment
	Technical Knowledge	and Competencies	
PO1 Fundamental Knowledge	Ability to acquire knowledge of fundamental laws and principles of chemistry related to current application as well as knowledge in social science and personnel development. (C2, P2, A2)	Lectures, tutorials, laboratory works, directed reading, and group discussion.	Examination, test, quiz, and report.
PO2 Application of chemistry knowledge and skill	Ability to apply, practice and analyze fundamental laws, principles of chemistry and chemical techniques using scientific methodologies related to chemical application. (C4, P4, A3)	Lectures, laboratory works, assigned reading, group discussion and problem solving assignments, hands-on instrumentations, chemistry related software.	Examination, test, quiz, assignment, and laboratory report, oral presentation, group project, and computer simulation.
PO3 Scientific Study and Research	Ability to plan, evaluate and demonstrate scientific studies and research related to chemistry. (C6, P6, A3)	Lectures, laboratory works, assigned reading, group discussion and problem solving assignments, Hands on instrumentations, chemistry related softwares skills, research project, experimental works, project presentation and report, research training.	Examination, test, quiz, assignment, and laboratory report, oral presentation, group project, computer simulation, research proposal, presentation, final year project report and research

http://science.utm.my

...where great minds are nurtured

26

			training supervisory report.
	Generic	: Skills	
PO4 Critical Thinking & Problem Solving	Ability to learn independently and demonstrate knowledge and understanding of chemical principles, theories and evaluate current research (P4)	Independent research projects, group research projects, research training	Independent project report, laboratory report, final year project report
PO5 Communication Skills	Ability to present technical, scientific and chemical information and arguments clearly and correctly, in writing and orally to a range of audience (P4)	Group project, independent research, individual assignment, research training	Oral presentation, written assignment, laboratory report, final year project report
PO6 Team Working	Ability to portray good interpersonal skills with high ability to work collaboratively as part of a team undertaking a range of different team roles (A3)	Tutorials, laboratory works, group assignments.	Laboratory report and group presentation
PO7 Lifelong Learning and Information Management	Ability to seek new knowledge, skills and manage relevant information from various sources (A3)	Tutorials, research projects, laboratory works	Laboratory report, research project report
PO8 Leadership	Ability to demonstrate leadership, to take action and to get others involved (A3)	Group assignments and presentations.	Group assignment report and presentation

http://science.utm.my

...where great minds are nurtured

27

PO9 Ethics and Integrity	Ability to act with integrity and good ethics in their profession and their obligation to society (A3)	Examination, individual assignment and individual research projects	Report and seminar presentation
PO10 Entrepreneurship	Awareness of business, entrepreneurship opportunities (P2)	Final year projects, laboratory works, research training.	Written assignment, laboratory report, essay, final year project report.

http://science.utm.my

Classification of Courses

No.	Classification	Credit Hours	Percentage(%)
i.	Basic Sciences and Mathematics	13	50.5
ii.	Programme Core	62	58.5
iii.	Programme Electives	33	25.8
iv.	Compulsory University Courses Humanity English Language Co-curriculum Entrepreneurship	10 6 2 2	15.7
	Total	128	100

For Science programme please fill up the following classification. (Others please refer to the Statutory Body guidelines)

No.	Classification	Credit Hours	Percentage(%)
A	Chemistry Courses (a) Lectures (b) Laboratory / Workshop / Field (c) Research Training (d) Final Year Project	76 9 5 6	59.4 7.0 3.9 4.7
	Total Credit Hours for Part A	96	75.0
В	Related Courses (a) Mathematics (b) Humanities / Ethics (c) Service Learning (d) English (e) Entrepreneurship	12 10 2 6 2	9.4 7.8 1.6 4.6 1.6
	Total Credit Hours for Part B	32	25.0
	Total Credit Hours for Part A and B	128	100

Total credit hours to graduate

128 credit hours

29

http://science.utm.my ...where great minds are nurtured

Programme Structures and Features, Curriculum and Award Requirements

The course is offered on full-time mode and is based on 2-Semesters Academic Session with several Courses being delivered and assessed in each Semester. Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

To graduate, students should:

- Attain a total of not less than **128** credit hours with minimum CPA of 2.00.
- Pass Research training (equivalent to 5 credit hours).
- Complete and pass the undergraduate project Final Year Project.

	SEMESTER 1			SEMESTER 2	
Code	Courses	Cr	Code	Courses	Cr
UICI 1012	Islamic and Asian Civilization	2 ULAB11 22		Academic English Skills	2
SSCC 1322	Introduction to Chemistry Program	2	SSCC 1413	Chemical Thermodynamics	3
SSCC 1003	Principles of Chemistry	3	SSCC 1841	Physical Chemistry Practical I	1
SSCC 1901	Chemistry Practical	1	SSCC 1603	Organic Chemistry - Functional Groups	3
SSCC 1703	Inorganic Chemistry	3	SSCC 1831	Organic Chemistry Practical I	1
SSCC 1851	Inorganic Chemistry Practical I	1	SSCM 1103	Statistics	3
SSCM 1023	Mathematical Methods I	3		University Courses	
			UHAS 1172	Malaysia Dynamics*	2
			UHAS 1162	Arts, Custom and Belief of Malaysian*	2
			ULAM 1112	Bahasa Malaysia*	2
Total Cre	dit Hours	15	Total Cre	dit Hours	15

http://science.utm.my

...where great minds are nurtured

30

- * UHAS 1172 : Local Student
- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

	SEMESTER 3			SEMESTER 4					
Code	Courses	Cr	Code	Courses	cr				
SSCC	Organic Chemistry –	3	ULAB	Advanced English	0				
2613	Biomolecules	3	2122	Academic Skills	2				
SSCC	Organic Chemistry	1	SSCC	Coordination	3				
2891	Practical II	1	2713	Chemistry	3				
SSCC	Chemical Kinetics and	3	SSCC	Inorganic Chemistry	1				
2453	Electrochemistry	5	2851	Practical II	1				
SSCC	Physical Chemistry	1	SSCC	Molecular	3				
2841	Practical II		2473	Spectroscopy	3				
SSCC	Laboratory		SSCC	Principles of Analytical					
2312	Management and	2	2243	Chemistry	3				
2012	Safety		2240	Chomisity					
SSCM	Mathematical	3	SSCC	Analytical Chemistry	1				
1033	Methods I	5	2861	Practical I	1				
UICI	Science Technology	2	Innovatio	on and Creativity Electives					
2022	and Humanity	2	(Choose	2 credits)					
			UKQU	Innovation and	2				
			2202	Creativity	Z				
			UHAS	Critical and Creative	2				
			2122	Thinking	Z				
Total Cre	edit Hours	15	Total Cre	edit Hours	15				
SEMESTE	R 5		SEMESTER	8.6					
Code	Courses	Cr	Code	Courses	cr				
UKQL 3012	Service Learning	2	SSCC 3463	Quantum Chemistry	3				
SSCC	Instrumental Analysis	3	SSCU	Research Methodology and Information	3				
3233			3623	Retrieval	Ū				
SSCC	Analytical Chemistry	1	Elective	(Choose 9 credits)					
3871	Practical II								
SSCC	Principles of Polymer	3	SSCC	Separation Methods	3				
3323	Chemistry	5	3243		Ŭ				
SSCM	Computer Literacy	3	SSCC	Applications of	3				
1303	L Computer Literacy		3533	Computer in Chemistry	3				

http://science.utm.my

ULAB 3162	English for Professional Purposes	2			
	nent/Society/Globalizatio (Choose 2 credits)	n	SSCC 3643	Application of Spectroscopy	3
UHAS 2032	Technocrat and Development	2	SSCP 4453	Low Temperature Physics and Superconductivity	3
UHAS 2092	Professional Ethics	2	SSCC 4603	Medicinal Chemistry	3
			Entreprene (Choose 2	eurship Elective credits)	
			UHAS 3012	Entrepreneurship and Enterprise Development	2
Total Crea	dit Hours	16	Total Cree	dit Hours	17

	(
--	---	--

SHORT SE	SHORT SEMESTER								
Code	Courses	cr							
SSCU 3915	Industrial Training (HW)	5							
Total Crea	dit Hours	5							

SEMESTER	7		SEMESTER	8	
Code	Courses	cr	Code	Courses	cr
SSCU	Undergraduate	2	SSCU	Undergraduate	4
4902	Project I	2	4904	Project II	4
Electives	(Choose 12 Credits)		Electives (Choose 12 Credits)		
SSCC	Analytical	2	SSCC		2
4233	Electrochemistry	3	4263	Thermal Analysis	3
SSCC 4773	Inorganic and Organometallic Polymers	3	SSCC 4473	Solid State Chemistry	3
SSCC	Chemical Reactions	3	SSCC	Metabolism of	3
4443	Process	3	4693	Biomolecules	3
SSCC	Organic Synthesis	3	SSCC		2
4653		5	4763	Nanochemistry	3
SSCC	Develie els ensistes	2	SSCC	Surface and Colloid	2
4733	Radiochemistry	3	4493	Chemistry	3

http://science.utm.my

aculty	of
cience	

SSCC	Organometallic		SSCP	Microscopy and	0
4723	Chemistry	3	4403	Material Analysis	3
SSCC		~	SSCP	Vacuum and Thin Film	0
4363	Green Chemistry	3	4603	Technology	3
Total Cre	dit Hours	14	Total Cre	dit Hours	16

http://science.utm.my

Mapping of Programme Learning Outcomes to Courses

C	Courses Offered	Fundamental Knowledge	Application of Chemistry knowledge	Analyzing and Experimental Skills	Critical Thinking and Problem Solving	Communication Skills	Team working	Lifelong Learning	Leadership	Integrity	Entrepreneurship
Code	Course Name	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO 10
	•		C	Core Co	ourses						
	Introduction to Chemistry Program										
SSCC	Principles of Chemistry		\checkmark								
SSCC 1901	Chemistry Practical		\checkmark								
	Inorganic Chemistry		\checkmark								
1851	Inorganic Chemistry Practical I		\checkmark								
	Mathematical Methods I		\checkmark								
SSCM 1103	Statistics		\checkmark								
	Chemical Thermodynamics		\checkmark		v						
	Physical Chemistry Practical I		\checkmark		\checkmark		\checkmark		\checkmark		
\$3CC	Organic Chemistry – Functional Groups										

http://science.utm.my

...where great minds are nurtured

34

A DELTAROLOGIENT	UNIVERSIT		MALAYSIA	Faculty Science
------------------	-----------	--	----------	--------------------

of

	Organic Chemistry Practical I				\checkmark						
	Mathematical Methods II		\checkmark			\checkmark					
SSCC 2613	Organic Chemistry – Biomolecule		\checkmark					\checkmark			
	Organic Chemistry Practical II		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
SSCC 2453	Chemical Kinetics and Electrochemistry		\checkmark		\checkmark						\checkmark
	Physical Chemistry Practical II		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
	Laboratory Safety and Management		\checkmark			\checkmark					
	Coordination Chemistry		\checkmark						\checkmark		
	Inorganic Chemistry Practical II		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Molecular Spectroscopy		\checkmark		\checkmark						
	Principles of Analytical Chemistry		V					V			
SSCC 2861	Analytical Chemistry Practical I		\checkmark	\checkmark			\checkmark				
	Instrumental Analysis		\checkmark	\checkmark						\checkmark	
SSCC 3871	Analytical Chemistry Practical II		\checkmark	V	V	\checkmark					
	Principles of Polymer Chemistry		\checkmark								
SSCU 3623	Research Methodology and Information Retrieval	\checkmark	V					V		V	
3463	Quantum Chemistry		\checkmark	\checkmark	\checkmark						
SSCU 3915	Research Training		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark

B.Sc. (Chemistry) SSCA

35

http://science.utm.my

SSCU	Undergraduate	, I	ļ ,	,	ļ ,	,		, I		,	
	Project I		\checkmark		\checkmark	\checkmark					
	Undergraduate										
4904	Project II		ELA								
Elective Courses											
	Separation Methods	\checkmark	\checkmark	\checkmark				\checkmark			
SSCC 3533	Application of Computer in Chemistry	\checkmark	\checkmark								
	Application of Spectroscopy	\checkmark	\checkmark							\checkmark	
	Organometallic Chemistry	\checkmark	\checkmark	\checkmark				\checkmark			
	Analytical Electrochemistry	\checkmark	\checkmark					\checkmark			
	Surface and Colloid Chemistry	\checkmark	\checkmark			\checkmark					
33CC 4773	Inorganic and Organometallic Polymers	\checkmark	\checkmark				\checkmark				
	Chemical Reactions Process	\checkmark	\checkmark								\checkmark
SSCC 4653	Organic Synthesis	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark
	Solid State Chemistry	\checkmark	\checkmark		\checkmark						
	Metabolism of Biomolecules	\checkmark	\checkmark	\checkmark							
SSCC 4763	Nanochemistry	\checkmark	\checkmark	\checkmark				\checkmark			
SSCC 4263	Thermal Analysis	\checkmark	\checkmark	\checkmark		\checkmark					
SSCC 4733	Radiochemistry	\checkmark	\checkmark	\checkmark							
	Medicinal chemistry	\checkmark	\checkmark					\checkmark			
SSCC 4363	Green Chemistry	\checkmark	\checkmark							\checkmark	
	Microscopy and Material Analysis	\checkmark	\checkmark						\checkmark		

B.Sc. (Chemistry) SSCA

http://science.utm.my

UNIVERSIT	TTEKNOLOGI MALAYSIA											37
22CP 1153	Low Temperature Physics and Superconductivity		\checkmark	V			\checkmark					B.S
			Uni	versity	Cours	es			•	•		\cap
UICI 1012	Islamic and Asian Civilizations (TITAS)	\checkmark			\checkmark					\checkmark		. ((
UHAS 1172	Malaysia Dynamics											ĴŲ€
UHAS 1162	Arts, Custom and Belief of Malaysian											em
ULAM 1112	Bahasa Malaysia											istr
UICI 2022	Science, Technology and Humanity											B.Sc. (Chemistry) SSC
UHAS 2122	Critical and Creative thinking	\checkmark			\checkmark	\checkmark						Č,
UKQU 2202	Innovation and creativity											
UHAS 2092	Professional Ethics	\checkmark				\checkmark				\checkmark		
UHAS 2032	Technocrat and Development											
UHAS 3012	Entrepreneurship and Enterprise Development										\checkmark	
ULAB 1122	English for Academic Communications					\checkmark		\checkmark				
ULAB 2122	Advanced English for Academic Skills					\checkmark						
UKQL 3012	Service Learning					\checkmark	\checkmark					

PO1-PO3 = Technical Skills PO4-PO10 = Generic Skills

http://science.utm.my

Programme Uniqueness

- The program allows students to perform their research training at local or foreign organizations.
- Our laboratories are equipped with state of the art facilities and instruments.
- The program is recognized by Malaysian Institute of Chemistry (IKM).
- Established links with local and international research institutions and industries.
- The program allows student to transfer credit of certain equivalence courses offered by other universities locally and overseas.

Career Prospects and Career Path

Graduates of this programme can work as

- chemists or scientists in government research institutions such as MARDI, Malaysia Palm Oil Board (MPOB), RRI, PRSS, AMREC, SIRIM and Malaysia Nuclear Agency (MNA).
- chemists or process engineers in private sectors such as in petrochemicals, rubber, palm oil, pharmaceuticals, textiles and dyes, cosmeceuticals, electronics, water treatment and food processing companies.
- academics or researchers in higher learning institutions, following pursuance of their degree qualifications to Masters or Ph.D. levels.
- quality control or quality assurance and marketing officers in agencies or industries in which sound knowledge of chemistry skills are required.

Cross Campus Programme

Students are given the opportunity to enrol certain courses in participating institutions either locally or abroad. The grades and credits of up to 1/3 of the total credits of the curriculum are transferable.

Professional Skills Program Certificate

Students are given a chance to enrol in certificate programmes offered by Centres of Excellence in the university during their semester breaks. For example, Certificate in Total Quality Management.

http://science.utm.my ...where great minds are nurtured

Facilities Available

List of facilities:

- 1. Research Laboratories
- 2. Glass Blowing Workshop
- 3. Biotechnology Laboratory
- 4. Macromolecule Laboratory
- 5. Chemical Store
- 6. Department of Chemistry Resource Centre
- 7. Students Activity Room
- 8. Students Computer Room
- 9. Inorganic Chemistry 1 & 2
- 10. Physical Chemistry 1 & 2
- 11. Organic Chemistry 1 & 2
- 12. Analytical Chemistry 1 & 2
- 13. Forensic Laboratory
- 14. Instrument Rooms

List of Instruments

- 1. High Resolution Nuclear Magnetic Resonance Spectrometer
- 2. Solid State Nuclear Magnetic Resonance Spectrometer
- 3. Gas Chromatography-Mass Spectrometer System
- 4. Fourier Transfrom Infrared Spectrometers
- 5. Gel Permeation Chromatograph
- 6. UV-Visible Spectrometers
- 7. Diffuse-Reflectance UV-Visible Spectrometer
- 8. High Performance Liquid Chromatograph
- 9. Gas Chromatograph
- 10. Atomic Absorption Spectrometer
- 11. Scanning Electron Microscop
- 12. Field Emission Scanning Electron Microscope
- 13. Transmission Electron Microscope
- 14. Ion Chromatograph
- 15. Capillary Electrophoresis Unit
- 16. Single point BET Surface Area Analyzer
- 17. Multipoint Surface Analyzer
- 18. Differential Scanning Calorimeter
- 19. Thermogravimetry Analyzer
- 20. Voltammetric System

http://science.utm.my

...where great minds are nurtured

- 21. Fluorescence Spectrometer
- 22. Surface Adsorption/Desorption System
- 23. Total Organic Carbon Analyzer
- 24. Flame Photometer
- 25. Electron Spin Resonance Spectrometer
- 26. X-Ray Diffraction Spectrometer
- 27. Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
- 28. Glove box

Support for Students and Their Learning

- (a) Support Personnel
 - Academic Advisor
 - Counselor
 - Student Association (PESAT)
- (b) Infrastructure support
 - Internet access (Wireless)
 - e-learning
 - Digital library
 - Cafeterias
 - Health care center
 - Sports and recreational areas
 - Smart classroom
 - Students activity room •
 - **Reading Stations** •
- (c) Financial support
 - Perbadanan Tabung Pendidikan Tinggi Negara (PTPTN)
 - MARA
 - JPA and others.

http://science.utm.my

Methods for Evaluating and Improving the Quality and Standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards.

1. Students performance in terms of:

- KS/KB/KG Pass/conditional pass/fail
- CPA Cumulative point average
- Graduating students performance
- GOT Graduate on time
- Completion rate
- Analysis of course performance

2. Employability

- Exit survey
- Alumni survey
- Market survey

3. Lecturer's performance

- Teaching evaluation by students (e-PPP)
- Competency check-list for staff (CS)
- Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - Industrial training survey
 - PSM survey
 - External examiner reports
 - CO achievement survey by students
 - Students e-Portfolio
 - Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - Customer Satisfaction Index (CSI)
 - Employer Satisfaction Index (ESI)
 - Anugerah Kualiti Naib Canselor (AKNC) audit
 - Malaysia Quality Assurance (MQA) standard

http://science.utm.my

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70-74	B+	3.33
65-69	В	3.00
60-64	B-	2.67
55-59	C+	2.33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	E	0.00

- 2. Role of External Examiners (Visiting Examiners) Visiting Examiners are appointed by the Faculty Academic Committee to
 - review and evaluate programme curriculum,
 - review and evaluate methods of students assessment,
 - make necessary recommendations to the Academic committee

http://science.utm.my

Assessment Tools

			L	.earn	ing (Outc	ome	s				~
Measurement Tools	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	Duration	Action by
e- Portfolio	х	x	x	x	x	x	х	x	x	х	Conti- nuous	Student
Course outcome survey	x	x	x	x	x	x	x	x	x	x	Per semester	Lecturer
Course outcome report	х	x	x	x	x	x	х	x	x	х	Per semester	Lecturer
Final Year Project survey	х	х	х	х	х		х		х		Per semester	Faculty
PO survey by final year students	x	x	x	x	x	x	x	x	x	x	Per semester	Faculty
Research training survey			x	x	x	x	x	x	x		Per session	Faculty
Alumni Survey	х	х	х	х	х	х	х	х	х	х	Once/ year	Head of Dept
Employer Survey	х	х	x	x	x	x	х	x	x	х	Once/ year	Head of Dept

43

http://science.utm.my

Bachelor of Science (Industrial Chemistry)

Awarding Institution	Universiti Teknologi Malaysia
Teaching Institution	Universiti Teknologi Malaysia
Program Name	Bachelor of Science in Industrial Chemistry
Final Award	Bachelor of Science (Industrial Chemistry)
Program Code	TSO7 (SSCC)
Professional or Statutory Body of	Malaysian Ministry of Higher Education
Accreditation	Kementerian Pengajian Tinggi Malaysia
Language(s) of Instruction	Bahasa Malaysia and English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-governing
(Franchise, self-govern, etc)	
Study Scheme (Full Time/Part Time)	Full Time
Study Duration	Minimum : 4 yrs
	Maximum : 6 yrs

	No. of	semester	No. of weeks per semester		
Type of Semester	Full Time	Part Time	Full Time	Part Time	
Normal	8	8	14	14	
Short	-	4	-	6	

Entry Requirement

Fulfills University requirements and the following program requirements:

STPM/Matriculation/Science Foundation Minimum CGPA of 2.80 and passed with Grade B in Chemistry and Grade B- in ONE (1) of the following subject : Biology/Mathematics/Physics

http://science.utm.my

DIPLOMA

Minimum CGPA of 3.00 and passed with credits in Mathematics in the SPM/equivalent examination.

Program Educational Objectives (PEO)

The objectives of the B.Sc. (Industrial Chemistry) program are to provide the knowledge, skills and attributes that should be achieved by the graduates for a successful career. The program is designed to:

- educate graduates who continually use and seek out new knowledge and skills in the planning, analysis, design and supervision of works related to the chemistry discipline.
- train graduates who are able to find out immediate solutions related to current industrial chemistry issues for the development and betterment of the nation and the world.
- educate graduates who are able to analyze and identify business opportunities and embark on entrepreneurship.
- prepare graduates who are able to contribute in a team or a group involved in chemical industrial projects.
- train graduates to be a leader in an organization with good leadership, ethics and professional qualities for the development of the nation and mankind.
- prepare graduates who are able to work collectively in societies of diverse backgrounds to achieve common goals.
- prepare graduates who are able to communicate effectively across a range of contacts and audiences.

http://science.utm.my

Program Learning Outcomes (PO)

Program Learning Outcomes	Intended Learning Outcomes	Teaching and Learning Methods	Assessment
	Technical Knowledge a	nd Competencies	
PO1 Fundamental knowledge	Ability to acquire knowledge of fundamental laws and principles of chemistry related to current application as well as knowledge in social science and personnel development. (C2, P2, A2)	Lectures, tutorials, laboratory works, directed reading, group discussion	Examination, test, quiz, and laboratory report.
PO2 Application of Chemistry knowledge and skills	Ability to apply, practice and analyze fundamental laws and principles of chemistry using scientific methodologies related to industrial application. (C4, P4, A3)	Lectures, laboratory works, assigned reading, group discussion and problem solving assignments, hands-on instrumentations, and chemistry related softwares.	Examination, test, quiz, assignment, laboratory report, oral presentation and group project,
PO3 Analyzing and experimentation skills	Ability to plan, evaluate and demonstrate scientific study related to industrial chemistry. (C6, P6, A3)	Lectures, laboratory work, assigned reading, group discussion and problem solving, assignments, hands-on instrumentations, chemistry software and research project. Research proposal, project presentation and report.	Examination, test, quiz, assignment, and laboratory report, Group project, computer simulation. Project Proposal, presentation, final year project report, and Industrial supervisor report.

http://science.utm.my

...where great minds are nurtured

Generic Skills								
PO4 Critical Thinking and Problem Solving	Ability to practice knowledge and skills of chemical principles and theories to solve scientific problems. (P4)	Independent research projects, group research projects, industrial training	Independent project report, individual assignment report and industrial training report					
PO5 Communication Skills	Ability to present technical, scientific and chemical information and arguments clearly and correctly, in writing and orally to a range of audiences. (P4)	Group projects, Laboratory work, independent research, industrial training.	Oral presentation, written assignment, laboratory report, research project report, Industrial training report					
PO6 Team Working	Ability to portray good interpersonal skills with high ability to work collaboratively as part of a team undertaking a range of different team roles. (A3)	Laboratory works, group assignments	Laboratory report, logbooks and group assignment report					
PO7 Lifelong learning and Information Management	Ability to seek new knowledge, skills and manage relevant information from various sources. (A3)	Final Year Project, individual assignment and laboratory works, Industrial training	Final year project report, written assignment and Laboratory report, Industrial training report					
PO8 Leadership skills	Ability to demonstrate leadership, to take actions and to influence others in order to achieve common goals. (A3)	Group assignment, laboratory work	Group assignment report and laboratory report					

http://science.utm.my

...where great minds are nurtured

B.Sc. (Industrial Chemistry) SSCC

PO9 Ethics and Integrity	Ability to adapt ethical values with integrity in their profession and their obligation to society. (A3)	Lecture, Individual assignment, Laboratory work, Final Year Project and industrial training	Laboratory Report, individual assignment report, seminar presentation and final year project report
PO10. Entrepreneurship	Awareness of business, entrepreneurship and career opportunities. (P2)	Lecture, Laboratory works and case studies and Industrial training	Written assignment, Final year report and industrial training report

47

http://science.utm.my

Classification of Courses

No.	Classification	Credit Hours	Percentage (%)
1	Basic Sciences and Mathematics	13	58.5
2	Program core	62	50.5
3	Program Elective	33	25.8
4	Compulsory University Courses Humanity English Language Co-curriculum Entrepreneurship	10 6 2 2	15.6
	Total	128	100

For Science program please fill up the following classification. (Others please refer to the Statutory Body guidelines)

No.	Classification	Credit Hours	Percentage (%)
А	Chemistry Courses		
	(a) Lecture	70	54.7
	(b) Laboratory/Workshop/Field	9	7.0
	(c) Industrial Training	5	3.9
	(d) Final Year Project	6	4.7
	Total credit hours for Part A	93	70.3
В	Related Courses		
	(a) Mathematics	9	7.0
	(b) Humanities/Ethics	10	7.8
	(c) Co-Curriculum	2	1.6
	(d) English	6	4.7
	(e) Entrepreneurship	2	1.6
	(f) Management	9	7.0
	Total credit hours for Part B	38	29.7
	Total credit hours for Parts A and B	128	100

Total credit hours to graduate

128 credit hours

http://science.utm.my

...where great minds are nurtured

Programme Structures and Features, Curriculum and Award Requirements

The course is offered on full-time mode and is based on 2-Semesters Academic Session with several courses being delivered and assessed in each Semester. Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

To Graduate Students should:

- Attain a total of not less than **128** credit hours with minimum CPA of 2.00.
- Pass Industrial Training (equivalent to 5 credit hours).
- Complete and pass the undergraduate project Final Year Project.

	SEMESTER 1		SEMESTER 2			
Code	Name of Courses	cr	Code	Name of Courses	cr	
UICI	Islamic and Asian	2	ULAB	Academic English Skills	2	
1012	Civilization	2	1122		2	
SSCC	Principles of Chemistry	3	SSCC	Chemical	3	
1003		5	1413	Thermodynamics	5	
SSCC	Chemistry Practical	1	SSCC	Physical Chemistry	1	
1901		I	1841	Practical I	1	
SSCC	Inorganic Chemistry	3	SSCC	Organic Chemistry -	3	
1703		5	1603	Functional Groups	5	
SSCC	Inorganic Chemistry	1	SSCC	Organic Chemistry	1	
1851	Practical I	I	1821	Practical I	1	
SSCM	Mathematical Methods I	3	SSCM	Statistics	3	
1023			1103			
SSCC 1332	Introduction to Industrial Chemistry Program	2		University Courses		
			UHAS 1172	Malaysia Dynamics *	2	
			UHAS	Arts, Custom and Belief		
			1162	of Malaysian*	2	
			ULAM 1112	Bahasa Malaysia*	2	
Total cr	edit hours	15	Total cr	edit hours	15	

http://science.utm.my

- * UHAS 1172 : Local Student
- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

	SEMESTER 3			SEMESTER 4	
Code	Name of Courses	cr	Code	Name of Courses	cr
SSCC 2613	Organic Chemistry - Biomolecules	3	ULAB 2122	Advanced Academic English Skills	2
SSCC 2891	Organic Chemistry Practical II	1	SSCC 2713	Coordination Chemistry	3
SSCC 2453	Chemical Kinetics and Electrochemistry	3	SSCC 2851	Inorganic Chemistry Practical II	1
SSCC 2841	Physical Chemistry Practical II	1	SSCC 2473	Molecular Spectroscopy	3
SSCC 2312	Laboratory Management and Safety	2	SSCC 2243	Principles of Analytical Chemistry	3
SSCM 1303	Computer Literacy	3	SSCC 2861	Analytical Chemistry Practical I	1
UICI 2022	Science, Technology and Humanity	2	Innovation and Creativity Electives (Choose 2 credits)		
			UKQU 2202	Innovation and creativity	2
			UHAS 2122	Critical and Creative Thinking	2
Total cr	redit hours	15	Total cr	edit hours	15
	SEMESTER 5	1		SEMESTER 6	
Code	Name of Courses	cr	Code	Name of Courses	cr
UKQL 3012	Service Learning	2	SSCC 3423	Industrial Chemical Process	3
SSCC 3233	Instrumental Analysis	3	SSCC 3533	Applications of Computer in Chemistry	3
SSCC 3871	Analytical Chemistry Practical II	1	SSCC 3243	Separation Methods	3
SSCC 3323	Principles of Polymer Chemistry	3	Entrepre	eneurship	

http://science.utm.my

...where great minds are nurtured

ULAB	English for Professional	2	UHAS	Entrepreneurship and	2			
3162	Purposes	2	3012	Enterprise Development	2			
	pment/Society/Globalizatior es (Choose 2 credits)	ו	Management Elective (Choose 6 credits)					
UHAS 2032	Technocrat and Development	2	SHAF 1013	Principles of Marketing	3			
UHAS 2092	Professional Ethics	2	SHAD 1043	Organizational Behaviors	3			
Manag	ement Elective		SSCP	Quality Control	3			
-	e 3 credits)		3433		Ű			
SHAD 1033	Principles of Management	3						
Shac 1023	Cost Accounting	3						
Total cr	redit hours	16	Total cr	edit hours	17			
	SHORT SEMESTER			L]				
Code	Name of Course	cr						
SSCU 3905	Industrial Training (HW)	5						
Total cr	redit hours	5						
	SEMESTER 7		SEMESTER 8					
Code	Name of Courses	cr	Code	Name of Courses	Cr			
SSCU 4902	Undergraduate Project 1	2	SSCU 4904	Undergraduate Project II	4			
Elective	e (Choose 12 credits)		Elective	(Choose 12 credits)				
SSCC 3643	Application of Spectroscopy	3	SSCC 4253	Food Analysis	3			
SSCC 4223	Environmental Science	3	SSCC 4673	Industrial Organic Chemistry	3			
SSCC 4663	Natural Product Chemistry	3	SSCC 4293	Radioanalytical chemistry				
SSCC 4273	Forensic Science	3	SSCC 4353	SSCC Consumer Chemistry				
SSCC 4483	Corrosion Chemistry	3	SSCC 4493	SSCC Surface and Colloid				

51

B.Sc. (Industrial Chemistry) SSCC

http://science.utm.my

SSCC

4683

SSCC

4743

Total credit hours

Total credit hours

Mapping of Programme Learning Outcomes to Courses

14

Co	Courses Offered			Analyzing and Experimental Skills	Critical Thinking and Problem Solving	Communication Skills	Team working	Lifelong Learning		Integrity	Entrepreneurship
Code	Course Name	PO1 Fundamental Knowledge	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10
	Core Courses										
SSCC 1322	Introduction to Chemistry Program	~				✓		~			
SSCC 1003	Principles of Chemistry	~	~			~					
SSCC 1901	Chemistry Practical	~	~								
SSCC 1703	Inorganic Chemistry	~	~			✓					
SSCC 1851	Inorganic Chemistry Practical I	~	~		~		~				
SSCM 1023	Mathematical Methods I	~	~			\checkmark					
SSCM 1113	Statistics	✓	~				~				
SSCC 1413	Chemical Thermodynamics	\checkmark	~		~						

http://science.utm.my

...where great minds are nurtured

52

SSCC 1841	Physical Chemistry Practical I	~	~		~		~		~		
SSCC 1603	Organic Chemistry – Functional Groups	~	~			~					
SSCC 1821	Organic Chemistry Practical I	✓	~		~						
SSCM 1033	Mathematical Methods II	✓	~			~					
SSCC 2613	Organic Chemistry – Biomolecules	~	~					~			
SSCC 2891	Organic Chemistry Practical II	~	~	~	~	~	~				~
SSCC 2453	Chemical Kinetics and Electrochemistry	~	~		~						✓
SSCC 2841	Physical Chemistry Practical II	~	~	~	~		~		~		~
SSCC 2312	Laboratory Safety and Management	~	~			~					
SSCC 2713	Coordination Chemistry	\checkmark	\checkmark						\checkmark		
SSCC 2851	Inorganic Chemistry Practical II	~	~	~	~	~	~				
SSCC 2473	Molecular Spectroscopy	\checkmark	\checkmark		~						
SSCC 2243	Principles of Analytical Chemistry	~	~					~			
SSCC 2831	Analytical Chemistry Practical I	✓	~	~	~		~		~		
SSCC 3233	Instrumental Analysis	✓	✓	~						~	
SSCC 3871	Analytical Chemistry Practical II	✓	~	~	~	~	~			~	
SSCC 3323	Principles of Polymer Chemistry	~	~						~		
4											

B.Sc. (Industrial Chemistry) SSCC

53

http://science.utm.my

		-								
SSCU 3623	Research Methodology and Information Retrieval	~	~					~	~	
SSCC 3463	Quantum Chemistry	~	~	~	~					
SSCU 3915	Research Training	~	~	~	~	~	~		~	~
SSCU 4902	Undergraduate Project I	~	~	~	~	~		~	~	
SSCU 4904	Undergraduate Project II	~	~	~	~	~		~	~	
			Elec	tive C	ourses	;		•	•	
SSCC 3283	Separation Methods	✓	~	~				~		
SSCC 3533	Application of Computer in Chemistry	~	~	~					~	
SSCC 3643	Application of Spectroscopy	~	~						~	
SSCC 4723	Organometallic Chemistry	~	~	~				~		
SSCC 4233	Analytical Electrochemistry	~	~					~		
SSCC 4493	Surface and Colloid Chemistry	✓	~			~				
SSCC 4773	Inorganic and Organometallic Polymers	✓	~				~			
SSCC 4443	Chemical Reactions Process	~	~							~
SSCC 4653	Organic Synthesis	~	~	~	~					~
SSCC 4473	Solid State Chemistry	~	~		~					
SSCC 4693	Metabolism of Biomolecules	~	~	~			~			
SSCC 4763	Nanochemistry	~	~	~				~		
SSCC 4263	Thermal Analysis	~	~	~		~				
SSCC 2733	Radiochemistry	✓	~	~			~			
SSCC 4603	Medicinal Chemistry	~	~					~		
SSCC 4363	Green Chemistry	✓	✓						✓	
4363										

54

http://science.utm.my

SSCP	Microscopy and	✓	~						✓			
4403	Material Analysis											
SSCP 4453	Low Temperature Physics and Superconductivity	✓	~	~			~					
	University Courses											
UICI 1012	Islamic and Asian Civilizations (TITAS)											
UICI 2022	Science, Technology and Humanity											
UKQU 2202	Innovation and Creativity	✓				~				~		
UHAS 1172	Malaysia Dynamics											
UHAS 1162	Arts, Custom and Belief of Malaysian											
ULAM 1112	Bahasa Malaysia											
UHAS 2032	Technocrate and Development											
UHAS 2092	Professional Ethics											
UHAS 2122	Critical and Creative thinking											
UHAS 3012	Entrepreneurship and Enterprise Development	✓				~						
ULAB 1122	Academic English Skills	\checkmark			~	✓						
ULAB 2122	Advanced English Academic Skills											
ULAB 3162	English for Professional Purposes											
UQL 3012	Service Learning	√				✓	✓					

55

PO1-PO3 = Technical Skills PO4-PO10 = Generic Skills

http://science.utm.my

Programme Uniqueness

- The program is specially tailored to suit the current industrial needs.
- This program allows student to do their industrial placement at local or foreign companies.
- This program is recognized by professional body; Malaysian Institute of Chemistry.
- Established links with local and international industries.
- The program allows student to do transfer credit of certain equivalence courses offered by other universities locally and overseas.
- Our laboratories are equipped with state of the art facilities and instruments.

Career Prospects and Career Path

Graduates of the program can work as

- chemists or scientists in government research institutions such as MARDI, Malaysia Palm Oil Board (MPOB), RRI, PRSS, AMREC, SIRIM, Jabatan Kimia Malaysia and Malaysian Nuclear Agency (Nuclear Malaysia).
- chemists or process engineers in private sectors such as in petrochemicals, rubber, palm oil, pharmaceuticals, textiles and dyes, cosmeceuticals, electronics, water treatment and food processing companies.
- academics or researchers in higher learning institutions, following pursuance of their degree qualifications to Masters or PhD levels.
- quality control or quality assurance and marketing officers in agencies or industries in which sound knowledge of chemistry skills are required.

Cross Campus Programme

Students are given the opportunity to enroll certain courses in participating universities locally and overseas. The grades and credits up to 1/3 of the total credits of the curriculum are transferable.

UTM Degree ++ Program

Students are given a chance to enroll in certificate programs offered by Centers of Excellence in the university during their semester breaks. For example, Certificate

http://science.utm.my

...where great minds are nurtured

of Attendance in Basic Electronics, Communicate with Confidence, Good Resume Writing, Personal Grooming etc.

Facilities Available

List of Facilities:

- 1. Inorganic Chemistry Laboratory 1 & 2
- 2. Physical Chemistry Laboratory 1 & 2
- 3. Organic Chemistry Laboratory 1 & 2
- 4. Analytical Laboratory 1, 2, & 3
- 5. Instrument Rooms (10)
- 6. Research Laboratories (10)
- 7. Glass Blowing Workshop
- 8. Biotechnology Laboratory
- 9. Macromolecule Laboratory
- 10. Chemical Store
- 11. Department of Chemistry Resource Center
- 12. Students Activity Room
- 13. Students Computer Room

List of Instruments:

- 1. Nuclear Magnetic Resonance Spectrometer
- 2. Solid State Nuclear Magnetic Resonance Spectrometer
- 3. Gas Chromatography-Mass Spectrometer System
- 4. Fourier Transform Infrared Spectrometers
- 5. Gel Permeation Chromatograph
- 6. UV-Visible Spectrometers
- 7. Diffuse-Reflectance UV-Visible Spectrophotometer
- 8. High Performance Liquid Chromatograph
- 9. Gas Chromatograph
- 10. Atomic Absorption Spectrometer
- 11. Scanning Electron Microscope
- 12. Field Emission Scanning Electron Microscope
- 13. Transmission Electron Microscope
- 14. Ion Chromatograph
- 15. Capillary Electrophoresis Unit
- 16. Single Point BET Surface Area Analyzer
- 17. Multipoint Surface Analyzer
- 18. Differential Scanning Calorimeter

http://science.utm.my

- 19. Thermogravimetry Analyzer
- 20. Voltammetric System
- 21. Fluorescence Spectrometer
- 22. Surface Adsorption/Desorption System
- 23. Total Organic Carbon Analyzer
- 24. Flame Photometer
- 25. Electron Spin Resonance Spectrometer
- 26. X-Ray Diffraction Spectrometer
- 27. Inductively Coupled Plasma-Mass Spectrometer (ICP-MS)
- 28. Glove Box

Support for Students and Their Learning

- (a) Support Personnel
 - Academic Advisor
 - Counselor
 - Student Association (PESAT)
- (b) Infrastructure support
 - Internet access (Wireless)
 - e-learning
 - Digital library
 - Cafeterias
 - Health care center
 - Sports and recreational areas
 - Smart classroom
 - Students activity room
 - Reading Stations
- (c) Financial support
 - Perbadanan Tabung Pendidikan Tinggi Negara (PTPTN)
 - MARA
 - JPA and others.

http://science.utm.my

Methods for Evaluating and Improving the Quality and Standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards.

1. Students performance in terms of:

- KS/KB/KG Pass/conditional pass/fail
- CPA Cumulative point average
- Graduating students performance
- GOT Graduate on time
- Completion rate
- Analysis of course performance

2. Employability

- Exit survey
- Alumni survey
- Market survey

3. Lecturer's performance

- Teaching evaluation by students (e-PPP)
- Competency check-list for staff (CS)
- Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - Industrial training survey
 - PSM survey
 - External examiner reports
 - CO achievement survey by students
 - Students e-Portfolio
 - Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - Customer Satisfaction Index (CSI)
 - Employer Satisfaction Index (ESI)
 - Anugerah Kualiti Naib Canselor (AKNC) audit
 - Malaysia Quality Assurance (MQA) standard

http://science.utm.my

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70-74	B+	3.33
65-69	В	3.00
60-64	B-	2.67
55-59	C+	2.33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	E	0.00

- 2. Role of External Examiners (Visiting Examiners) Visiting Examiners are appointed by the Faculty Academic Committee to
 - review and evaluate programme curriculum,
 - review and evaluate methods of students assessment,
 - make necessary recommendations to the Academic committee

http://science.utm.my

Assessment Tools

				Learr	ning (Outco	omes	5			ч	bу
Measurement Tools	PO1	P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	Duration	Action by
e- Portfolio	х	х	х	х	х	х	х	х	х	х	Conti- nuous	Student
Course outcome survey	x	х	х	х	х	х	х	x	х	x	per semes- ter	Lecturer
Course outcome report	x	x	x	x	x	x	х	x	x	x	per semes- ter	Lecturer
Final Year Project survey	x	x	x	x	х		х		x		per semes- ter	Faculty
PO survey by final year students	x	x	x	x	х	x	х	x	x	x	per semes- ter	Faculty
Industrial training survey			x	x	х	х	х	x	x		End of Session	Faculty
Alumni Survey	х	х	х	х	х	х	х	х	х	х	Once/ year	Head of Dept.
Employer Survey	х	х	х	х	х	х	х	х	х	х	Once/ year	Head of Dept.

61

http://science.utm.my

Bachelor of Science (Mathematics)

Awarding Institution	Universiti Teknologi Malaysia
Teaching Institution	Universiti Teknologi Malaysia
Programme Name	Bachelor of Science in Mathematics
Final Award	Bachelor of Science (Mathematics)
Programme Code	TSO8 (SSCE)
Professional or Statutory Body of	Malaysian Ministry of Higher
Accreditation	Education
Language(s) of Instruction	Bahasa Malaysia & English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-govern
(Franchise, self-govern, etc)	
Study Scheme	Full Time
(Full Time/Part Time)	
Study Duration	Minimum: 4 years
	Maximum: 6 years

	No. of Se	emesters	No. of weeks per semester			
Type of Semester	Full Time	Part Time	Full Time	Part Time		
Normal	8	-	14	-		
Short	-	-	-	-		

Entry Requirement

1. Fulfill all university requirements and the following programme requirements:

STPM/MATRICULATION/SCIENCE FOUNDATION Minimum CGPA of 2.80 and passed with Grade B in Mathematics and Grade B- in ONE (1) of the following subjects : Chemistry/Physics/ Biology

http://science.utm.my

...where great minds are nurtured

Programme Educational Objectives (PEO)

The objectives of the BSc (Mathematics) programme are to provide the knowledge, skills and attributes that should be achieved by the graduates for a successful career. It is therefore anticipated that, graduates of the programme will

- 1. be mathematically competent professionals able to apply their knowledge and skills in related industries notably in teaching, research and development of new knowledge.
- 2. have the proficiency in both writing and oral communication to disseminate mathematical knowledge effectively.
- 3. have the skills and motivation for continued life-long education in the acquisition of new mathematical knowledge and skills in depth and in breath.

http://science.utm.my

Programme Learning Outcomes (PO)

Code	Intended Learning Outcomes	Teaching and Learning Methods	Assessment
	Technical Knowle	dge and Competencie	25
PO1 Fundamental Knowledge of Mathematics	Ability to acquire knowledge on fundamental mathematical concepts, theories and techniques related to current issues. (C2, P2, A2)	Lectures, tutorials, directed reading.	Examinations, tests, quizzes, assignments.
PO2 Application of Mathematical Knowledge and Computation al Techniques and Analysis	Ability to apply and practice skills in mathematical reasoning, construct mathematical proofs and display proficiency in using a variety of mathematical techniques in carrying out mathematical analysis (C4, P4, A3)	Lectures, tutorials, projects (PSM, Group/individual), directed reading, hands-on computer- based exercises, simulation exercises, research training.	Examinations, quizzes, tests, computing output, presentations, project reports, research training report.

http://science.utm.my

...where great minds are nurtured

PO3 Discrimination and organization of mathematical concepts	Ability to evaluate and demonstrate proficiency in choosing appropriate methods to solve theoretical and applied problems in mathematical sciences (C6, P6, A3)	Lectures, projects (Undergraduate Project (PSM), Group/individual), directed reading, computer-based exercises, problem- based learning and research training.	Examinations, quizzes, tests, computing output, presentations, project reports and research training report.								
Generic Skills											
PO4 Critical Thinking and Problem Solving	Ability to understand, extract, analyse and identify problems from a variety of sources and develop approaches based on mathematical knowledge to solve problems. (P4)	Active learning, projects (PSM, Group/individual), research training.	Written assignments, oral presentations, project reports, learning portfolio, research training report.								
PO5 Communica- tion Skills	Ability to convey ideas and mathematical knowledge clearly and effectively in both written and oral forms to a range of audiences. (P4)	Active learning, projects (PSM, Group/individual), research training.	Oral presentations, project reports, research training report.								
PO6 Team Working	Ability to adapt and work collaboratively as part of a team. (A3)	Active learning, projects (PSM, Group), research training.	Oral presentations, project reports, peer evaluation, research training report.								

Lectures, projects

http://science.utm.my

...where great minds are nurtured

PO7 Lifelong Learning and Information Management	Ability to seek independent study and demonstrate the awareness for continuous personal and professional development. (A3)	Active learning, projects (PSM, Group/individual), professional development courses (Degree ++), research training.	Written assignments, oral presentations, project reports, learning portfolio, research training report.		
PO8 Leadership Skills	Ability to demonstrate leadership, to take actions and to influence others in order to achieve common goals. (A3)	Active learning, group projects, service learning, co- curricular activities, group work.	Oral presentations, project reports, peer evaluation.		
PO9 Ethics and Integrity	Ability to adapt ethical values and integrity in the context of their profession and obligations to society (A3)	Lectures, assignments, case studies, PSM, seminar, workshop, co-curricular activities, group work.	Written assignments, oral presentations, PSM reports, examination, research training report.		
PO10 Entrepreneur-	Ability to acquire awareness of business and entrepreneurship	Lectures, assignments, case studies, PSM, seminar, workshop,	Written assignments, oral presentations, PSM reports, examination,		

67

examination,

research training

report.

Classification	of	Courses
----------------	----	---------

entrepreneurship

and career

opportunities.

(P2)

No.	Classification	Credit Hours	Percentage(%)
i.	Basic Sciences and Mathematics	9	57.9
ii.	Programme Core	64	0, 1,

seminar, workshop,

co-curricular

activities, group

work.

http://science.utm.my

ship

iii.	Programme Electives	33	26.2
iv.	Compulsory University Courses • Humanity • English Language • Co-curriculum • Entrepreneurship	10 6 2 2	15.9
	Total	126	100
	programme please fill up the f to the Statutory Body guideline	-	on. (Others
No	Classification	Credit Hours	Percentage(%)
A	Mathematics Courses (a) Lecture (b) Research Training (c) Final Year Project	95 5 6	75.4 3.9 4.8
	Total Credit Hours for Part A	106	84.1
В	Related Courses (a) Humanities/Ethics (b) Co-curriculum (c) English (d) Entrepreneurship	10 2 6 2	7.9 1.6 4.8 1.6
	Total Credit Hours for Part B	20	15.9
	Total Credit Hours for Part A and B	126	100

Total credit hours to graduate

126 credit hours

Programme Structures and Features, Curriculum and Award Requirements

The course is offered on full-time mode and is based on a 2 Semester Academic Session with several subjects being delivered and assessed in each Semester. http://science.utm.my

...where great minds are nurtured

Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

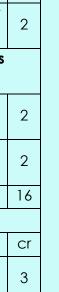
To graduate, students should:

- Attain a total of not less than 126 credit hours with minimum CPA of 2.0.
- Pass research training.
- Complete and pass the undergraduate final year project.

SEMESTER	1		SEMESTER 2			
Code	Courses	cr	Code	Courses	Cr	
SSCM	Introduction to		SSCM	Mathematical Methods	3	
1012	Mathematics Program	3	1033	П	5	
SSCM	Mathematical	3	SSCM	Computer	3	
1023	Methods I	5	1313	Programming	5	
SSCM	Statistics	3	SSCM		3	
1103		3	1523	Linear Algebra	5	
SSCM			SSCM	Differential Equations I	3	
1303	Computer Literacy	3	1703	Differential Equations I	5	
SSCP	Mechanics/					
1143/			ULAB	Acadomic English Skills	2	
SSCC	Principles of Chemistry	2	1122	Academic English Skills	2	
1003						
			University Courses			
UICI	Islamic and Asian	2	UHAS	Malaysia Dynamics*	2	
1012	Civilization	2	1172		2	
			UHAS	Arts, Custom and Belief	2	
			1162	of Malaysian*	2	
			ULAM	Pahasa Malaysia*	2	
			1112	Bahasa Malaysia*	2	
Total Cre	dit Hours	16	Total Credit Hours 1			

- * UHAS 1172 : Local Student
- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

SEMESTER 3		SEMESTER 4			
Code	Courses	cr	Code	Courses	cr


http://science.utm.my

Faculty	of
Science	

	1	1	1	1			
SSCM 2103	Mathematical Statistics	3	SSCM 2043	Mathematical Methods	3		
SSCM 2423	Numerical Methods I	3	SSCM 2613	Advanced Calculus	3		
SSCM	Discrete Mathematics		SSCM	Mathematical	3		
2673	Discrete Mathematics	3	2803	Modelling I	5		
SSCM 2773	Differential Equations II	3	SSCM 2833	Linear Programming	3		
SSCM	Vector Calculus	3	ULAB	Advanced English for	2		
2793			2122	Academic Skills			
UICI	Science Technology	2		n and Creativity Electives			
2022	and Humanity		(Choose	-			
			UKQU	Innovation and	2		
			2202	Creativity			
			UHAS	Critical and Creative	2		
			2122	Thinking	16		
	Total Credit Hours 17		Total Credit Hours				
SEMESTER	5		SEMESTER 6				
Code	Courses	cr	Code	Courses	Cr		
SSCM 3703	Partial Differential Equations	3	SSCM 3423	Numerical Methods II	3		
UKQL	Service Learning	2	SSCU	Research Methodology	3		
3012		2	3623	& Information Retrieval	Ŭ		
ULAB	English for Professional		UHAS	Entrepreneurship and			
3162	Purposes	2	3012	Enterprise	2		
				Development			
	evelopment Electives 2 Credits)		Electives	(Choose 6 Credits)			
UHAS	Technocrat And		SSCM				
2032	Development	2	3353	C++ Programming	3		
UHAS 2092	Professional Ethics	2	SSCM 3553	Fields & Rings Theory	3		
Electives (Choose 6 Credits)		SSCM 3543	Number Theory	3			
SSCM 3503	Complex Variables	3	SSCM 3673	Functional Analysis	3		
SSCM 3523	Modern Algebra	3	SSCM 3753	Fluid Mechanics	3		

http://science.utm.my

...where great minds are nurtured

SSCM 3533	Set Theory and Logic	3		
SSCM 3793	Calculus of Variations	3		
Total Cree	Total Credit Hours		Total Credit Hours	14

SHORT SEMESTER							
Code	e Courses cr						
SSCU	Research Training (HW)	5					
3915		5					
Total Credit Hours							


SEMESTER 7		SEMESTER 8			
Code	Courses	cr	Code	Courses	cr
SSCU	Undergraduate Project	2	SSCU	Undergraduate Project	4
4902	1	2	4904	Ш	4

Electives	Electives (Choose 12 Credits)		Electives	(Choose 9 Credits)	
SSCM	Fuzzy Set Theory	3	SSCM	Quantum Mechanics	3
4633)	4783	Quantum Meenames	Ŭ
SSCM	Applied Abstract	3	SSCM	Non-Euclidean	3
4653	Algebra		4623	Geometry	5
SSCM	Тороlоду		SSCM	Dynamical Systems	3
4683	Topology	3	4733		
SSCM	Computational Fluid		SSCM		
4763	Dynamics	3	3153	Inferential Statistics	3
	Dynamics		5155		
SSCM	Stochastic Process	3	SSCM	Ontimal Control	3
4163		3	4813	Optimal Control	5
Total Crea	dit Hours	14	Total Cree	dit Hours	13

http://science.utm.my

...where great minds are nurtured

Mapping of Programme Learning Outcomes to Courses

							r				,
С	ourses Offered	Fundamental Knowledge	Mathematical Application	Mathematical Analysis	Critical Thinking and Problem Solving	Communication	Team Working	Lifelong Learning	Leadership Skills	Ethics and Integrity	Entrepreneurship
Code	Course Name	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO1 0
			C	Core C	ourses						
SSCM	Introduction to Mathematics Program										
	Mathematical Methods I										
1103	Statistics						V				
1303	Computer Literacy										
1143	Mechanics						\checkmark				
1003	Principles of Chemistry						V				
	Mathematical Methods II										
	Computer Programming						V				
SSCM	Linear Algebra		\checkmark								

B.Sc. (Mathematics) SSCE

72

http://science.utm.my

			Ele	ective	Course	es					
UKQL 3012	Service Learning	\checkmark									
SSCU 4904	Undergraduate Project II	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark	
SSCU 4902	Undergraduate Project I	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
SSCU 3915	Research Training (HW)	\checkmark		\checkmark		\checkmark	V				\checkmark
SSCU 3623	Research Methodology & Information Retrieval	V	V					\checkmark		V	
SSCM 3703	Partial Differential Equations		\checkmark								
	Numerical Methods II	\checkmark	\checkmark		\checkmark						
	Linear Programming	V	\checkmark	\checkmark		\checkmark	\checkmark				
	Mathematical Modelling I		\checkmark	\checkmark			\checkmark		\checkmark		
SSCM 2613	Advanced Calculus					\checkmark					
	Mathematical Methods III		\checkmark								
SSCM 2773	Differential Equations II	\checkmark	\checkmark				V				
SSCM 2793	Vector Calculus										
	Discrete Mathematics	\checkmark	\checkmark				\checkmark				
	Numerical Methods I				\checkmark						
	Mathematical Statistics						V				
SSCM 1703	Differential Equations I	\checkmark	\checkmark				\checkmark				

SSCM 3503 http://science.utm.my

P.11

Complex Variables

...where great minds are nurtured

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

				ivorsitv	-					
SSCM 4733	Dynamical Systems	\checkmark	\checkmark	\checkmark			\checkmark			
SSCM 4813	Optimal Control		\checkmark	\checkmark			\checkmark			
3153	Inferential Statistics		\checkmark			\checkmark				
55CM 4623	Non-Euclidean Geometry	\checkmark	\checkmark				\checkmark			
4783	Mechanics		V		\checkmark					
4163	Stochastic Process Quantum		V		\checkmark					
4763	Computational Fluid Dynamics		\checkmark	\checkmark				V		
SSCM 4683	Topology		\checkmark		\checkmark					
4653	Applied Abstract Algebra	\checkmark	\checkmark							
SSCM 4633	Fuzzy Set Theory		\checkmark		\checkmark					
SSCM 3673	Functional Analysis		\checkmark		\checkmark					
SSCM 3543	Number Theory		\checkmark					\checkmark		
	Fields and Rings Theory		\checkmark				\checkmark			
SSCM 3353	C++ Programming		\checkmark					V		
SSCM 3753	Fluid Mechanics		\checkmark			V				
SSCM 3523	Modern Algebra		\checkmark		\checkmark					
	Calculus of Variations	\checkmark	\checkmark			\checkmark				
3533	Set Theory and Logic		\checkmark		\checkmark					

University Courses

http://science.utm.my

UICI 1012	Islamic and Asian		\checkmark			\checkmark	
1012	Civilizations (TITAS)						
UICI 2022	Science Technology & Human						
UHAS 1172	Malaysia Dynamics						
UHAS	Arts, Custom and						
1162	Belief of Malaysian						
ULAM 1112	Bahasa Malaysia						
UHAS 2122	Critical and Creative Thinking						
UHAS 3012	Entrepreneurship and Enterprise Development						
UKQU 2202	Innovation and Creativity						
UHAS 2092	Professional Ethics						
UHAS 2032	Technocrat & Development						
ULAB 1122	Academic English Skills						
ULAB 2122	Advanced English for Academic Skills						
ULAB 3162	English for Professional Purposes						

75

PO1-PO3 = Fundamental Knowledge and Competencies PO4-PO10 = Generic Skills

Programme Uniqueness

- The special programme is designed to produce excellent young and talented mathematicians.
- Established links with local and international faculties/schools of mathematics for possible overseas research training.

http://science.utm.my

- A BSc in Mathematics programme which offers a research training at research laboratories either locally or overseas.
- This programme allows the transfer of credits of equivalent courses offered by participating local or overseas institutions.
- Prepares students to be able to develop and apply their mathematical knowledge and skills ethically in other areas of mathematics or other disciplines.

Career Prospects and Career Path

Graduates of this programme can work as

- Academicians and researchers in institutions of higher learning.
- Researchers at R&D departments in government-linked companies (GLC) or multinationals.
- Financial executives in financial institutions.
- Administrative officers in government establishments or private sectors.
- Sales and marketing executives.

Cross Campus Programme

Students are given the opportunity to enroll certain courses at participating universities either locally or abroad. The grades and credits of up to 1/3 of the total credits of the curriculum are transferable.

UTM Degree ++ Programme

Students are given a chance to enrol in certificate programmes offered by Centres of Excellence in the university during their semester breaks. For example, Certificate in Total Quality Management.

Facilities Available

List of computer laboratories and rooms with IT facilities

- 1. Computer Lab 1
- 2. Computer Lab 2
- 3. Computer Lab 3
- 4. Computer Lab 4
- 5. Smart Classroom
- 6. Resource Centre

http://science.utm.my

Support for Students and Their Learning

- 1. Two week induction programme for orientation and introductory study skills
- 2. Student Handbook and Module Guides
- 3. Staff student ratios for teaching of 1:15
- 4. Extensive library and other learning resources and facilities.
- 5. All students are allocated with personal advisors whose role is to assist them in education planning and personal problems

Methods for Evaluating and Improving the Quality and Standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards.

- 1. Students performance in terms of:
 - KS/KB
 - CPA
 - Graduating students performance
 - Graduate on time, GOT
 - Completion rate
 - Analysis of course performance
- 2. Employability
 - Exit survey
 - Alumni survey
 - Market survey
- 3. Lecturer's performance
 - Teaching evaluation by students (e-PPP)
 - Competency check-list for staff (CV)
 - Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - PSM survey
 - External examiner reports
 - CO achievement survey by students
 - Students e-Portfolio

http://science.utm.my

- Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - CSI
 - SSI
 - AKNC audit report
 - MQA standard

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70.74	B+	3.33
65-69	В	3.00
60-64	B-	2.67
55-59	C+	2,33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	E	0.00

- Role of External Examiners (Visiting Examiners)
 Visiting Examiners are appointed by Academic Board. The role of visiting examiners are to:
 - review and evaluate programme curriculum
 - review the assessment methods
 - make necessary recommendations to the faculty academic committee

http://science.utm.my

Assessment Tools

			L	.earn	ning (Outc	ome	s				>
Measurement Tools	101	LO2	L03	LO4	LO5	901	107	801	109	LO10	Durațion	Action by
e- Portfolio	х	x	х	х	х	х	х	х	х	х	Continu- ous	Student
Course outcome survey	x	x	x	x	x	x	х	х	x	х	End of sem	Lecturer
Course outcome report	х	x	x	x	х	х	х	х	х	х	End of sem	Lecturer
Final Year Project survey	х	x	х	х	х		х		х		End of sem	Faculty
PO survey by final year students	x	x	x	x	x	x	х	x	x	х	End of sem	Faculty
Research training survey			x	x	x	x	x	x	x		End of session	Faculty
Alumni Survey	x	x	x	x	x	x	х	х	x	х	Once/ years	Head of Dept
Employer Survey	х	x	х	х	x	x	х	х	x	х	Once/ years	Head of Dept

B.Sc. (Mathematics) SSCE

79

http://science.utm.my

Bachelor of Science (Industrial Mathematics)

Awardina Institution	Universiti Teknologi Malaysia
-	Universiti Teknologi Malaysia
Ŭ	Bachelor of Science in Industrial Mathematics
Final Award	Bachelor of Science (Industrial Mathematics)
Programme Code	TS34 (SSCM)
Professional or Statutory Body of	Malaysian Ministry of Higher Education
Accreditation	
Language(s) of Instruction	Bahasa Malaysia & English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-govern
(Franchise, self-govern, etc)	
Study Scheme	Full Time
(Full Time/Part Time)	
Study Duration	Minimum: 4 years
	Maximum: 6 years

	No. of Se	emesters	No. of weeks	per semester
Type of Semester	Full Time	Part Time	Full Time	Part Time
Normal	8	-	14	-
Short	-	-	-	-

Entry Requirement

1. Fulfill all university requirements and the following programme requirements:

STPM/MATRICULATION/SCIENCE FOUNDATION Minimum CGPA of 2.80 and passed with Grade B in Mathematics and Grade B- in ONE (1) of the following subjects : Chemistry/Physics/ Biology

http://science.utm.my

DIPLOMA

Minimum CGPA of 3.00 and passed with credits in Mathematics in the SPM/equivalent examination.

Programme Educational Objectives (PEO)

The objectives of the BSc (Industrial Mathematics) programme are to provide the knowledge, skills and attributes that should be achieved by the graduates for a successful career. It is therefore anticipated that, graduates of the programme will

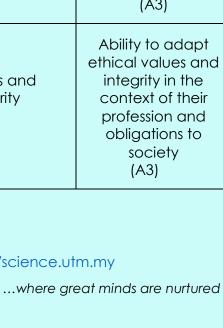
- 1. be mathematically competent professionals capable of dealing with qualitative and quantitative problems in related industries.
- 2. be able to assume productive roles and positions in planning, decision making, analysis and supervision of work in the industrial and public sectors.
- 3. exhibit team working and leadership skills with effective communication and desirable interpersonal skills.
- 4. pursue life-long learning, enabling them to identify, adapt and seize business opportunities.

Programme Learning Outcomes (PO)

Code	Intended Learning Outcomes	Teaching and Learning Methods	Assessment
	Technical Knowle	dge and Competencie	es
PO1 Fundamental Knowledge of Mathematics	Ability to acquire knowledge on fundamental mathematical concepts, theories and techniques related to current issues. (C2, P2, A2)	Lectures, tutorials, directed reading.	Examinations, tests, quizzes, assignments.

http://science.utm.my

	culty of ence		
PO2 Application of Mathematical Knowledge and Computation al Techniques and Analysis	Ability to apply the mathematics knowledge and techniques efficiently to solve mathematical and statistical problems and do convincing analysis on the results obtained. (C4,P4,A3)	Lectures, tutorials, projects (Undergraduate Project(PSM), group/individual), directed reading, computer-based exercises, industrial training.	Examinations, quizzes, tests, computing output, presentations, project reports, industrial training reports.
PO3 Discrimination and organization of mathematical concepts	Ability to evaluate, propose and demonstrate appropriate methods to solve applied problems in Mathematical Sciences and the industry through the reorganization of mathematical knowledge and techniques.(C6,P6, A3)	Lectures, projects (PSM, group/individual), directed reading, computer-based learning, problem- based learning, industrial training.	Examinations, quizzes, tests, computer output, presentations, project reports, industrial training reports.
	Ge	neric Skills	


Ability to understand, extract, analyse and identify Written assignments, problems from a PO4 Active learning, oral presentations, variety of sources Critical projects (PSM, project reports, and develop Thinking and Group/individual), learning portfolio, Problem approaches based industrial training. industrial training Solving on the reports. mathematical knowledge to solve problems. (P4)

http://science.utm.my

PO5 Communica- tion Skills	Ability to convey ideas clearly and effectively in both written and oral forms to a range of audiences. (P4)	Active learning, projects (PSM, Group/individual), industrial training.	Oral presentations, project reports, industrial training reports.
PO6 Team Working	Ability to adapt and work collaboratively as part of a team. (A3)	Active learning, projects (PSM, Group), industrial training.	Oral presentations, project reports, peer evaluation, industrial training report.
PO7 Lifelong Learning and Information Management	Ability to seek independent study and demonstrate the awareness for continuous personal and professional development. (A3)	Active learning, projects (PSM, Group/individual), professional development courses, industrial training.	Written assignments, oral presentations, project reports, learning portfolio, industrial training report.
PO8 Leadership Skills	Ability to demonstrate leadership, to take actions and to influence others in order to achieve common goals. (A3)	Active learning, group projects, service learning, co- curricular activities, group work.	Oral presentations, project reports, peer evaluation.
PO9 Ethics and Integrity	Ability to adapt ethical values and integrity in the context of their profession and obligations to society (A3)	PSM, co-curricular activities, group work, industrial training.	PSM reports, learning portfolio, industrial training report.

Classification of Courses

No.	Classification	Credit Hours	Percentage(%)
i.	Basic Sciences and Mathematics	9	58.9
ii.	Programme Core	67	
iii.	Programme Electives	33	25.6
iv.	Compulsory University Courses • Humanity • English Language • Co-curriculum • Entrepreneurship	10 6 2 2	15.5
	Total	129	100
	programme please fill up the f	•	ion. (Others
•	r to the Statutory Body guideline		
Νο	Classification	Credit Hours	Percentage(%)
A	Mathematics Courses (a) Lectures (b) Industrial Training (c) Undergraduate Project	98 5 6	76 3.9 4.7
A	(a) Lectures(b) Industrial Training(c) Undergraduate	5	3.9

http://science.utm.my

Faculty of	
Science	

Total Credit Hours for Part B	20	15.5
Total Credit Hours for Part A and B	129	100

Total credit hours to graduate

129 credit hours

Programme Structures and Features, Curriculum and Award Requirements

The course is offered on full-time mode and is based on a two Semester Academic Session with several subjects being delivered and assessed in each semester. Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

To graduate, students should:

- Attain a total of not less than 129 credit hours with minimum CPA of 2.0.
- Pass industrial training.
- Complete and pass the undergraduate final year project.

SEMESTER	1	SEMESTER 2			
Code	Courses	cr	Code	Courses	cr
SSCM 1002	Introduction to Industrial Mathematics Program	2	SSCM 1033	Mathematical Methods II	3
SSCM	Mathematical	3	SSCM	Computer	3
1023	Methods I	5	1313	Programming	3
SSCM	Statistics	3	SSCM	Linear Algebra	3
1103	STUTISTICS	5	1523		5
SSCM	Computer Literacy	3	SSCM	Differential Equations I	3
1303		5	1703	Differential Equations (5
SSCP					
1143/	Mechanics/	3	ULAB	Academic English Skills	2
SSCC	Principles of Chemistry	5	1122		2
1003					

http://science.utm.my

aculty	of	
cience		

UICI 1012	Islamic and Asian Civilization	2 University Courses			
			UHAS	Malaysia Dynamics*	2
			1172 Maldysid Dynamics		2
			UHAS Arts, Custom and Belie		2
			1162	of Malaysian*	
			ULAM Bahang Malauria*		2
			1112	Bahasa Malaysia*	
Total Crea	dit Hours	16	5 Total Credit Hours		16

* UHAS 1172 : Local Student

- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

SEMESTER 3			SEMESTER 4				
Code	Courses	cr	Code	Courses	cr		
SSCM	Mathematical Statistics	3	SSCM	Mathematical Methods	3		
2103	Mainemalical statistics	3	2043	III	3		
SSCM	Numerical Methods I	3	SSCM	Advanced Calculus	3		
2423	Nomencal Memoas I	5	2613		5		
SSCM	Discrete Mathematics	3	SSCM	Mathematical	3		
2673	Discrete Mathematics	5	2803	Modelling I	0		
SSCM	Differential Equations II	3	SSCM	Linear Programming	3		
2773		0	2833		0		
SSCM	Vector Calculus	3	ULAB	Advanced English for	2		
2793		Ŭ	2122	Academic Skills	2		
UICI	Science Technology	2	Innovation and Creativity Electives				
2022	and Humanity	~	(Choose 2 credits)				
			UKQU	Innovation and	2		
			2202	Creativity	_		
			UHAS	Critical and Creative	2		
			2122	Thinking	2		
Total Cree	dit Hours	17	Total Cre	dit Hours	16		
SEMESTER	5		SEMESTER	6	-		
Code	Courses	cr	Code	Courses	cr		
SSCM	Statistical Quality	3	SSCM	Design of Experiments	3		
3133	Control	Ŭ	3103	Design of Experiments	5		
SSCM	Mathematical	3	SSCM	Numerical Methods II	3		
3803	Modelling II	5	3423		5		

http://science.utm.my

ULAB 3162	English for Professional Purposes	2	UHAS 3102	Entrepreneurship and Enterprise Development	2
			UKQL 3012	Service Learning	2
	evelopment Electives		Electives	(Choose 6 Credits)	
(Choose 2	2 Credits)				-
UHAS	Technocrat And	2	SSCM	Multivariate Analysis	3
2032	Development	~	3123		
UHAS	Professional Ethics	2	SSCM	Inferential Statistics	3
2092	FIOLESSIONAL EITIICS	2	3153	Interential statistics	3
			SSCM		3
Electives	Electives (Choose 6 Credits)		3353	C++ Programming	3
SSCM	De sisiere The serve	3	SSCM		2
3143	Decision Theory	3	3753	Fluid Mechanics	3
SSCM		3	SSCM		2
3533	Set Theory and Logic	3	3843	Optimization Methods	3
SSCM	Partial Differential	3	SHAF	Principles of Marketing	3
3703	Equations	3	1013	Principles of Marketing	3
SSCM	Calculus of Variations	3			
3793	Calculus of Variations	3			
Shad	Multi-Objective	3			
1043	Decision Making	5			
Total Cree	dit Hours	16	Total Cre	dit Hours	16

SHORT SEMESTER						
Code	Courses cr					
SSCU	Industrial Training (HW)	5				
3915						
Total Credit Hours 5						

SEMESTER 7			SEMESTER 8			
Code	Courses	cr	Code	Courses	cr	
SSCU	Undergraduate Project	2	SSCU	Undergraduate Project	٨	
4902	1	Z	4904	Ш	4	
Electives (Choose 12 Credits)			Electives	(Choose 9 Credits)		
SSCM	Complex Variables	3	SSCM	Generalized Linear	0	
3503	3503		4213	Model	3	

SSCM	Madarn Algobra	2	SSCM	Sampling Techniques	2
3523	Modern Algebra	3	4243	Sampling Techniques	3
SSCM	Time Series	3	SSCM	Optimal Control	3
4113		3	4813		3
SSCM	Stochastic Process	3	SSCM	Discrete Event	3
4163		3	4833	Simulation	3
SSCM	Computational Fluid	3	SSCM	Financial Mathematics	3
4763	Dynamics	3	4863	FINANCIAI MAINEMAIICS	3
SSCM	Scheduling	3			
4823	Schedoling	3			
Shad	Principles of	3			
1033	Management	3			
Total Credit Hours		14	Total Credit Hours		13

Mapping of Programme Learning Outcomes to Courses

С	ourses Offered	Fundamental Knowledge	Application of Mathematical techniques	Analytical Computational Skills	Critical Thinking and Problem Solving	Communication	Team Working	Lifelong Learning	Leadership Skills	Ethics and Integrity	Entrepreneurship
Code	Course Name	PO1	P02	PO3	P04	PO5	PO6	P07	PO8	P09	0 e
sscm 1002	Introduction to Industrial Mathematics Program									\checkmark	
SSCM	Mathematical Methods I										
SSCP 1143	Mechanics						\checkmark				
	Principles of Chemistry						\checkmark				
SSCM 1103	Statistics	\checkmark	\checkmark				\checkmark				
SSCM 1303	Computer Literacy	\checkmark	\checkmark								
	Mathematical Methods II		\checkmark								
	Computer Programming		\checkmark								
SSCM 1523	Linear Algebra										

http://science.utm.my

Faculty	of
Science	

	Differential										
	Equations I										
	Mathematical	\checkmark	\checkmark								
	Statistics										
	Numerical	\checkmark			\checkmark						
	Methods I										
	Differential	\checkmark									
2773	Equations II										
SSCM 2793	Vector Calculus	\checkmark	\checkmark		\checkmark						
	Discrete										
	Mathematics	v	V				v				
SSCM	Mathematical										
2043	Methods III	v	v		v						
SSCM	Advanced										
2613	Calculus	V	v			v					
SSCM	Mathematical										
2803	Modelling I	V	V	v	V		V		V		
SSCM	Linear										
2833	Programming	V	V	v		v	v				
SSCM	Statistical Quality										
3133	Control	v	v					v			
	Mathematical										
	Modelling II										
	Design of	\checkmark									
	Experiments	,		,	,			,			
	Numerical										
	Methods II	Ň	Ŷ		Ŷ						
SSCU	Industrial Training										
	(HW)	,	,			,	,				1
SSCU	Undergraduate										
	Project I										
SSCU	Undergraduate										
4904	Project II	Ň	Ŷ		Ň	Ň		v		v	
	Elective Courses										
SSCM		1					1				
3143	Decision Theory	\checkmark	\checkmark								

Faculty of	
Science	

SSCM 3533	Set Theory and Logic	\checkmark	\checkmark		\checkmark					
	Partial Differential	1	1		1					
3703	Equations	\checkmark	\checkmark		\checkmark					
	Calculus of	\checkmark				\checkmark				
3793 SSCM	Variations Multi-Objective									
3883	Decision Making	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			
SSCM	Multivariate									
3123	Analysis	v	, ,		`					
SSCM 3353	C++ Programming	\checkmark	\checkmark					\checkmark		
SSCM 3843	Optimization Methods	\checkmark	\checkmark				\checkmark			
SSCM 3153	Inferential Statistics		V							
SSCM 3753	Fluid Mechanics	\checkmark	\checkmark			V				
SSCM 3523	Modern Algebra	\checkmark	\checkmark							
SSCM 3503	Complex Variables	\checkmark	\checkmark	\checkmark						
sscm 4113	Time Series	\checkmark	\checkmark	\checkmark			\checkmark			
SSCM 4163	Stochastic Process	\checkmark	\checkmark		\checkmark					
SSCM 4763	Computational Fluid Dynamics	\checkmark	\checkmark	\checkmark				\checkmark		
SSCM 4823	Scheduling	\checkmark	\checkmark	\checkmark	\checkmark					
SSCM 4863	Financial Mathematics	\checkmark	\checkmark	\checkmark	\checkmark					
sscm 4213	Generalized Linear Model	\checkmark	\checkmark	\checkmark						
SSCM 4813	Optimal Control	\checkmark	\checkmark	\checkmark			\checkmark			
SSCM 4833	Discrete Event Simulation	\checkmark	V				\checkmark			

SSCM	Sampling	1				1				
	Techniques	\checkmark		\checkmark		\checkmark				
	Organizational Behaviour				\checkmark		\checkmark			
	Principles of Marketing				\checkmark		\checkmark			
shad	Principles of Management						√			
	<u> </u>		Uni	versitv		es			I	
	Islamic and Asian Civilizations (TITAS)				√				\checkmark	
	Science Technology & Human									
UHAS 1172	Malaysia Dynamics									
	Arts, Custom and Belief of Malaysian									
ULAM 1112	Bahasa Malaysia									
	Critical and Creative Thinking				\checkmark					
	Entrepreneurship and Enterprise Development									
UKQU 2202	Innovation and Creativity									
UHAS 2092	Professional Ethics								\checkmark	
	Technocrat & Development									
	Academic English Skills									
2122	Advanced English for Academic Skills									
	English for Professional Purposes									

PO1-PO3 = Fundamental Knowledge and Competencies PO4-PO10 = Generic Skills

Programme Uniqueness

- The special programme is designed to produce excellent young and talented mathematicians.
- Established links with local and international faculties/schools of mathematics for possible overseas industrial training.
- The only BSc in Industrial Mathematics programme in the country which offers a one-semester industrial training either locally or overseas.
- This programme allows the transfer of credits of equivalent courses offered by participating local or overseas institutions.
- Prepares students to be able to apply their mathematical knowledge and skills ethically in the planning, decision-making, analysis and supervision of work related to industries and public or private sectors.

Career Prospects and Career Path

Graduates of this programme can work as

- Quality assurance manager, production control engineer and planning officer in industries such as manufacturing, telecommunications and oil & gas.
- Statisticians, operations research analysts, sales and marketing executives in service industries.
- Financial executives in financial institutions.
- Administrative officers in public and private sectors.
- Academicians and researchers in academic and research institutions.

Cross Campus Programme

Students are given the opportunity to enrol certain courses at participating institutions either locally or abroad. The grades and credits of up to 1/3 of the total credits of the curriculum are transferable.

UTM Degree ++ Programme

Students are given a chance to enrol in certificate programmes offered by Centres of Excellence in the university during their semester breaks. For example, Certificate in Total Quality Management.

http://science.utm.my

Facilities Available

List of computer laboratories and rooms with IT facilities

- 1. Computer Lab 1
- 2. Computer Lab 2
- 3. Computer Lab 3
- 4. Computer Lab 4
- 5. Smart Classroom
- 6. Resource Centre

Support for Students and Their Learning

- 1. Two week induction programme for orientation and introductory study skills
- 2. Student Handbook and Module Guides
- 3. Staff student ratios for teaching of 1:15
- 4. Extensive library and other learning resources and facilities.
- 5. Students are assigned to academic advisors to assist them in education planning.

Methods for Evaluating and Improving the Quality and Standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards.

- 1. Students performance in terms of:
 - KS/KB
 - CPA
 - Graduating students performance
 - Graduate on time, GOT
 - Completion rate
 - Analysis of course performance
- 2. Employability
 - Exit survey
 - Alumni survey
 - Market survey

http://science.utm.my

- 3. Lecturer's performance
 - Teaching evaluation by students (e-PPP)
 - Competency check-list for staff (CV)
 - Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - PSM survey
 - External examiner reports
 - CO achievement survey by students
 - Students e-Portfolio
 - Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - CSI
 - SSI
 - AKNC audit report
 - MQA standard

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70.74	B+	3.33
65-69	В	3.00
60-64	B-	2.67
55-59	C+	2,33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	Е	0.00

http://science.utm.my

- Role of External Examiners (Visiting Examiners)
 Visiting Examiners are appointed by Academic Board.
 The role of visiting examiners are to:
 - review and evaluate programme curriculum
 - review the assessment methods
 - make necessary recommendations to the faculty academic committee

Assessment Tools

Measurement			L	.earn	ing (Outc	ome	S			u	by
Tools	101	LO2	LO3	LO4	LO5	901	L07	108	601	LO10	Duration	Action by
e- Portfolio	х	х	х	x	х	х	х	х	х	х	Continu- ous	Student
Course outcome survey	х	х	x	x	x	х	х	x	х	x	End of sem	Lecturer
Course outcome report	х	х	х	х	х	х	х	х	х	х	End of sem	Lecturer
Undergra- duate Project survey	х	х	x	x	x		х		х		End of sem	Faculty
PO survey by final year students	x	x	x	x	x	x	x	x	x	x	End of sem	Faculty
Industrial training survey			x	x	x	x	x	x	x		End of session	Faculty
Alumni Survey	х	х	х	х	х	х	х	х	х	х	Once/ years	Head of Dept
Employer Survey	x	x	x	x	x	х	х	х	x	х	Once/ years	Head of Dept

http://science.utm.my

Bachelor of Science (Physics)

Awarding Institution	Universiti Teknologi Malaysia
Teaching Institution	Universiti Teknologi Malaysia
Programme Name	Bachelor of Science in Physics
Final Award	Bachelor of Science (Physics)
Programme Code	TS15
Professional or Statutory Body of	Malaysian Ministry of Higher
Accreditation	Education
Language(s) of Instruction	Bahasa Malaysia & English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-govern
(Franchise, self-govern, etc)	
Study Scheme	Full Time
(Full Time/Part Time)	
Study Duration	Minimum: 4 years
	Maximum: 6 years

	No. of Se	emesters	No. of weeks per semester			
Type of Semester	Full Time	Part Time	Full Time	Part Time		
Normal	8	-	14	-		
Short	-	-	-	-		

Entry Requirement

1. Fulfill all university requirements and the following programme requirements:

STPM/MATRICULATION/SCIENCE FOUNDATION Minimum CGPA of 2.80 and passed with Grade B in Physics and Grade B- in ONE (1) of the following subjects : Chemistry/Mathematics/ Biology

http://science.utm.my

...where great minds are nurtured

Programme Educational Objectives (PEO)

The objectives of Bachelor of Science in Physics are to provide the knowledge, skills and attributes that should be achieved by the graduates for a successful career. The programme is designed to:

- 1. Prepare graduates to work as a capable physicist in research and development institutions.
- 2. Prepare graduates capable of leading a team and taking higher responsibility in workplace and community.
- 3. Prepare graduates with reputable personality through critical reasoning and analysis, effective written and oral communication skills.
- 4. Prepare graduates with innovative and creative mind to meet new challenges.
- 5. Prepare graduates with professional integrity and capable of managing own learning successfully.
- 6. Prepare graduates that possess entrepreneurship skills and able to foresee towards wealth and job creations.

http://science.utm.my ...where great minds are nurtured

Programme Learning Outcomes (PO)

Code	Intended Learning Outcomes	Teaching and Learning Methods	Assessment						
Technical Knowledge and Competencies									
PO1 Fundamental Knowledge	Ability to acquire knowledge of fundamental laws and principles of physics related to current application as well as knowledge in social science and personnel development. (C2, P2, A2)	Lectures, tutorials, laboratory works, directed reading, and group discussion.	Examination, test, quiz and report.						
PO2 Application of Physics Knowledge and Skill	Ability to apply fundamental laws and principles of physics using experimental method, mathematical and computational techniques to solve physical problems (C4, P4, A3)	Lectures, laboratory works, assigned reading, group discussion and problem solving assignments, hands- on instrumentations, chemistry related software.	Examination, test, quiz, assignment, and laboratory report, oral presentations, group projects, and computer simulation.						

http://science.utm.my

...where great minds are nurtured

PO3 Scientific Study and Research	Ability to plan, analyze and interpret scientific study related to physics field (C6, P6, A3)	Lectures, laboratory works, assigned reading, group discussion and problem solving assignments, Hands on instrumentations, chemistry related software skills, research project, experimental works, project presentation and report, research training.	Examination, test, quiz, assignment, and laboratory report, oral presentation, group project, computer simulation, research proposal, presentation, final year project report and research training supervisory report.
	Ge	neric Skills	
PO4 Critical Thinking and Problem Solving	Ability to identify, analyze, formulate and solve problem scientifically (P4)	Lectures, tutorials, laboratory works, directed reading, simulation exercises, computer-based exercises, problem- based learning	Final Year Project reports, examinations, laboratory reports, presentations, assignments
PO5 Communica- tion Skills	Ability to communicate effectively and with confidence in writing and oral (P4)	Supervised project, lectures, laboratory works, individual assignment, research training.	Final Year Project reports, examinations, laboratory reports, presentations, written assignments, research training report.

...where great minds are nurtured

PO6 Team Working	Ability to function effectively and with responsibility as team member to achieve common goals and adapt to changing situations and priorities (A3)	Group discussion, laboratory work, group assignment, research training.	Laboratory reports, group Assignment, group project reports, research training report.
PO7 Lifelong Learning and Information Management	Ability to seek and acquire contemporary knowledge, work independently and manage learning time effectively (A3)	Final year projects, individual assignments, research training	Final year project reports, written assignments, research training report.
PO8 Leadership	Ability to function effectively and with responsibility as a leader in a team to achieve common goals (A3)	Projects, group assignments, laboratory work	Project report, group assignment, laboratory report
PO9 Ethics and Integrity	Ability to practice ethical values and integrity in scientific and social interactions, think positively and possessing self- esteem (A3)	Lecture, laboratory work, final year project, assignment, research training	Written assignments, laboratory report, final year project reports, research training

...where great minds are nurtured

PO10 Entrepreneurs hip	Awareness of business, entrepreneurship and career opportunities (P2)	Lecture, project, research training	Written assignment, project report, research training
------------------------------	---	--	---

Classification of Courses

No.	Classification	Credit Hours	Percentage(%)		
i.	Basic Sciences and Mathematics	23	58.9		
ii.	Programme Core	53			
iii.	Programme Electives	33	25.6		
iv.	Compulsory University Courses Humanity English Language Co-curriculum Entrepreneurship	10 6 2 2	15.9		
	Total	129	100		
	programme please fill up the f to the Statutory Body guideline Classification	-	Percentage(%)		
A	Physics Courses (a) Lecture (b) Laboratory/ Workshop (c) Final Year Project (d) Research Training	77 6 6 5	60.6 4.7 4.7 3.9		
	Total Credit Hours for Part A	94	72.9		

http://science.utm.my

...where great minds are nurtured

(d) English (e) Entrepreneurship	6 2	4.7 1.6
Total Credit Hours for Part B	33	25.6
Total Credit Hours for Part A and B	129	100

Total credit hours to graduate

129 credit hours

Programme Structures and Features, Curriculum and Award Requirements

The course is offered on full-time mode and is based on a 2 Semester Academic Session with several subjects being delivered and assessed in each semester. Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

To graduate, students should:

- Attain a total of not less than 129 credit hours with minimum CPA of 2.0.
- Pass the Research Training.
- Complete and pass the undergraduate final year project.

SEMESTER	1	SEMESTER 2						
Code	Courses	cr	Code	Courses				
UICI	Islamic and Asian	2	ULAB	Academic English Skills	2			
1012	Civilization	2	1122		2			
SSCM	Mathematical	3	SSCM	Mathematical	3			
1023	Methods I	5	1033	Methods II				
SSCP	Introduction to Physics	2	SSCP	Sound, Wave and	3			
1102	Program	2	1163	Optics	5			
SSCP	Mechanics	3	SSCP	Modern Physics	3			
1143		5	1223		5			
SSCP	Electricity and		SSCM	Linear Algebra	3			
1153	Magnetism	3	1523		5			

http://science.utm.my

...where great minds are nurtured

SSCP	Dractical Dhyrical	1	SSCP	Practical Physics II	1	
1811	Practical Physics I		1821	Practical Physics II	ļ	
			University	Courses		
			UHAS	Malaysia Dynamics*	2	
			1172			
			UHAS	Arts, Custom and Belief	2	
			1162	of Malaysian*	2	
			ULAM	Bahasa Malaysia*	2	
			1112		2	
Total Credit Hours			Total Cre	dit Hours	17	

* UHAS 1172 : Local Student

- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

SEMESTER	3	SEMESTER 4					
Code	Courses	Cr	Code	Courses	cr		
SSCM	Differential Equations	3	ULAB	Advanced English for	2		
1703		5	2122	Academic Skills	2		
SSCP	Nuclear Physics	3	UKQL	Service Learning	2		
2213		5	3012	Service Learning	2		
SSCP	Basic Electronics	3	SSCP	Thermodynamics	3		
2313	Dusic Electronics	5	2113	mernodynamics	5		
SSCP	Computer		SSCP	Solid State Physics	3		
2333	Programming	3	2413		5		
SSCP	Practical Physics III	1	SSCP	Mathematical Physics	3		
2811		1	2613	Mainemailearritysies	Ŭ		
UICI	Science, Technology	2	SSCP	Practical Physics IV	1		
2022	and Humanity		2821				
			Innovatio	n and Creativity Electives			
			(Choose	e 2 credits)			
			UKQU	Innovation and	2		
			2202	Creativity	2		
			UHAS	Critical and Creative	2		
			2122	Thinking	2		
Total Cre	dit Hours	16	Total Cre	dit Hours	16		
SEMESTER	8.5		SEMESTER	6			
Code	Courses	Cr	Code	Courses	cr		

104

http://science.utm.my

SSCP 3113	Electromagnetism	3	SSCP 3613	Quantum Mechanics 1	3			
SSCM 3503	Complex Variables	3	SSCP 3821	Practical Physics VI	1			
SSCP 3123	Classical Mechanics			(Choose 9 Credits)				
SSCP 3133	Thermal and Statistical Physics	3	SSCP 3143	Relativity	3			
SSCP 3811	Practical Physics V	1	SSCP 3153	Elementary Particle	3			
ULAB 3162	English for Professional Purposes	2	SSCP 3163	Energy and Environmental Physics	3			
Globaliza	nan Development/Society/ balization Electives oose 2 credits)			Computational Physics	3			
UHAS 2032	Technocrat And Development	2	SSCP 3523	Modern Optics	3			
UHAS 2092	Professional Ethics	2	Entrepreneurship Elective					
			UHAS 3012	Entrepreneurship and Enterprise Development	2			
Total Cree	dit Hours	17	Total Cre	Total Credit Hours				

SHORT SEMESTER									
Code	Courses	cr							
SSCU	Research Training (HW)	5							
3915		5							
Total Credit Hours									

SEMESTER	7		SEMESTER 8			
Code	Courses	cr	Code	Courses	cr	
SSCU	Undergraduate Project	2	SSCU	Undergraduate Project	1	
4902	1	2	4904	Ш	4	
Electives	(Choose 12 Credits)		Electives	(Choose 12 Credits)		
SSCP	Astrophysics	2	SSCP	Quantum Mechanics II	2	
4163	Astrophysics	3	4173		3	

...where great minds are nurtured

SSCP	Electronics and	3	SSCP	Advanced Nuclear	3
4323	Instrumentation	5	4213	Physics	0
SSCP	Signal Processing	3	SSCP	Magnetism	3
4383	Signal Tocessing	5	4433	Magnensm	5
SSCP			SSCP	Low Temperature	
	Semiconductor Physics			Physics and	3
4413			4453	Superconductivity	
SSCP	Condensed Matter	3	SSCP	Laser Physics	3
4423	Physics	5	4513		5
Total Credit Hours			Total Cree	dit Hours	16

http://science.utm.my

Mapping of Programme Learning Outcomes to Courses

T											
Courses Offered		Fundamental Knowledge	Application of Physics knowledge	Scientific Study and Research	Critical Thinking and Problem Solving	Communication Skills	Team Working	Lifelong Learning	Leadership Skills	Ethics and Integrity	Entrepreneurship
Code	Course Name	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10
			C	ore Co	ourses						
SSCP 1102	Introduction to Physics Program	✓	~			✓	~			~	
SSCM 1023	Mathematical Methods I	~	~			✓					
SSCM 1523	Linear Algebra	~	~			✓					
SSCM 1033	Mathematical Methods II	~	~			✓					
SSCM 1703	Differential Equations I	~	~		~						
SSCM 3503	Complex Variables	~	~				~				
SSCP 1143	Mechanics	~	~				~				
SSCP 1153	Electricity and Magnetism	~	~			✓					
SSCP 1811	Practical Physics I	~	~	✓	~					~	

http://science.utm.my

...where great minds are nurtured

Faculty of Science

OGI	UNIVERSITI	TERNOLOGI MALATSIA T										
-	SSCP 1163	Sound, Wave and Optics	~	~			~					В
	SSCP 1223	Modern Physics	✓	~				~				.Sc
	SSCP 1821	Practical Physics II	~	~	~	~		~			~	B.Sc. (Physics) SSC
	SSCP 2313	Basic Electronics	✓	~		~						hys
	SSCP 2213	Nuclear Physics	~	~				~				
	SSCP 2333	Computer Programming	✓	~	~	~						SS (
	SSCP 2811	Practical Physics III	~	~	~		~				~	CZ
-	SSCP 2113	Thermodynamics	~	~				~				
	SSCP 2613	Mathematical Physics	~	~					~			
	SSCP 2413	Solid State Physics	~	~			~			~		
	SSCP 2821	Practical Physics IV	~	~	~		~	~				
	SSCP 3123	Classical Mechanics	~	~					~			
-	SSCP 3113	Electromagnetism	~	~			~					
	SSCP 3811	Practical Physics V	~	~	~	~				~		
	SSCU 3915	Research Training (HW)	~	~	~	~	~	~			~	
	SSCP 3613	Quantum Mechanics 1	~	~					~			
	SSCP 3133	Thermal and Statistical Physics	✓	~			~					
	SSCP 3821	Practical Physics VI	\checkmark	~	~	~	~					
2	SSCU 4902	Undergraduate Project I	~	~	~	~			~		~	
1000	5											

108

http://science.utm.my

										r –	
SSCU 4904	Undergraduate Project II	~	~	~	~	~		~		~	
Elective Courses											
SSCP 3523	Modern Optics	~	✓			~					
SSCP 3343	Instrumentation and Data Acquisition	~	~	~	~						
SSCP 3333	Computational Physics	~	~	~					~		
SSCP 3153	Elementary Particles	~	~					✓			
SSCP 3143	Relativity	~	~			~					
SSCP 3163	Energy and Environmental Physics	~	~							~	
SSCP 4323	Electronics and Instrumentation	~	~	~		~					
SSCP 4163	Astrophysics	~	~	~					~		
SSCP 4333	Digital Signal Processing	~	~	~	~						
SSCP 4413	Semiconductor Physics	✓	~				~				
SSCP 4423	Condensed Matter Physics	✓	~			~					
SSCP 4433	Magnetism	✓	✓				~				
SSCP 4513	Laser Physics	~	~				~				
SSCP 4453	Low Temperature Physics and Super- conductivity	~	~				~				
SSCP 4173	Quantum Mechanics II	✓	~		~						

http://science.utm.my

SSCP Advanced ✓ ✓ ✓ 4213 Nuclear Physics **University Courses** UICI Islamic and Asian ✓ ✓ ✓ 1012 Civilisation UHAS Malaysia 1172 Dynamics Science, UICI Technology and 2022 Humanity UHAS **Professional Ethics** \checkmark ✓ ✓ 2092 UHAS Technocrat and 2032 Development UHAS Critical and ✓ ✓ ✓ 2122 Creative thinking UKQU Innovation and 2202 creativity Entrepreneurship UHAS and Enterprise ✓ ✓ ✓ 3012 Development ULAB Academic English ✓ ✓ √ 1122 Skills ULAB Advanced English ✓ ✓ 2122 for Academic Skills English for ULAB Professional 3162 Purposes UKQL ✓ ✓ Service Learning \checkmark 3012

PO1-PO3 = Technical Skills PO4-PO10 = Generic Skills

http://science.utm.my

Programme Uniqueness

- This programme stresses on the research skill and experience in research training in contemporary pure physics for the graduates.
- Established links with local and international faculties/schools of mathematics for possible overseas research training.

Career Prospects and Career Path

Graduates of this programme can work as

- Academics Higher learning institutions (following pursuance of their degree qualifications to Masters of PhD levels)
- Research Officer Research institutes, higher learning institutions and industries
- Science Officer Research institutes, higher learning institutions and industrie
- Physics Teacher Schools and colleges
- Quality Control/Assurance and Marketing Officers Agencies and industries

Cross Campus Programme

Students are given the opportunity to enroll certain courses at participating universities either locally or abroad. The grades and credits of up to 1/3 of the total credits of the curriculum are transferable.

Professional Skills Programme Certificate (UTM Degree ++ Programme)

Students must enroll in Professional Skills Programme conducted by SPACE UTM. Four of such courses are: ISO 9001:2008, OSHE, How to manage your finance, and How to get yourself employed.

Facilities Available

Laboratories:

- 1. Material Characterization laboratory
- 2. Material Preparations laboratory
- 3. Crystal Growth laboratory
- 4. Teaching Laboratory : Optics 1
- 5. Teaching Laboratory : Optics 2
- 6. Teaching Laboratory : Optics 3

http://science.utm.my

- 7. PCB Laboratory
- 8. Teaching Laboratory : Instrumentation 1
- 9. Teaching Laboratory : Instrumentation 2
- 10. Teaching Laboratory : Instrumentation 3
- 11. Teaching Laboratory : Instrumentation 4
- 12. Applied Optics Laboratory 1
- 13. Applied Optics Laboratory 2
- 14. Applied Optics Laboratory 3
- 15. Sputtering Laboratory
- 16. Thin Film Laboratory
- 17. Atomic Force Scanning Microscope (AFM) Laboratory
- 18. Teaching Laboratory: Material Physics 1
- 19. Teaching Laboratory: Material Physics 2
- 20. Teaching Laboratory: Nuclear Physics
- 21. Astrophysics Laboratory
- 22. Electronic Workshop
- 23. General Workshop
- 24. Tensile Testing Room
- 25. Non-destructive Testing Laboratory
- 26. Material Analysis Laboratory
- 27. Furnaces Room

List of instruments:

- 1. Single crystal growth apparatus
- 2. UV-VIS Spectrophotometer
- 3. CNC machine
- 4. Photoluminescence Spectometer
- 5. Ellipsometer
- 6. High Temperature Furnace
- 7. Differential Thermal Analyzer (DTA)
- 8. Vickers Hardness Equipment
- 9. General mechanical testing machine
- 10. Hyper pure Germanium Detector
- 11. Atomic Force Microscope (AFM)
- 12. Rapid Thermal Process (RTP)
- 13. Tensile Machine
- 14. Corrosion Machine

http://science.utm.my

Support for Students and Their Learning

- 1. Two week induction programme for orientation and introductory study skills
- 2. Student Handbook and Module Guides
- 3. Staff student ratios for teaching of 1:12
- 4. Extensive library and other learning resources and facilities.
- 5. All students are assigned an academic advisor who helps in personal problems and advising the learning programme.

Methods for Evaluating and Improving the Quality and standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards

1. Students performance in terms of:

- KB/KS/KG –Pass/conditional pass/fail
- CPA Cumulative point average
- Graduating students performance
- Graduate on time, GOT
- Completion rate
- Analysis of course performance
- 2. Employability
 - Exit survey
 - Alumni survey
 - Market survey
- 3. Lecturer's performance
 - Teaching evaluation by students (e-PPP)
 - Competency check-list for staff (CS)
 - Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - Research training survey
 - PSM survey
 - External examiner reports

http://science.utm.my

...where great minds are nurtured

- CO achievement survey by students
- Students e-Portfolio
- Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - Customer Satisfaction Index (CSI)
 - Employer Satisfaction Index (ESI)
 - Vice Chancellor's Quality Award (AKNC) audit
 - Malaysian Quality Assurance (MQA) standard

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70.74	B+	3.33
65-69	В	3.00
60-64	B-	2.67
55-59	C+	2,33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	E	0.00

2. Role of External Examiners (Visiting Examiners)

Visiting Examiners are appointed by the Faculty Academic Committee to

- review and evaluate programme curriculum
- review and evaluate methods of students assessment
- make necessary recommendations to the Faculty Academic Committee

http://science.utm.my

Assessment Tools

Measurement		Learning Outcomes									Ľ	þ
Tools	101	LO2	103	LO4	105	901	107	801	109	LO10	Duration	Action by
e- Portfolio	х	х	х	х	х	х	х	х	х	х	Continu- ous	Student
Course outcome survey Employer Survey	x	x	x	x	x	x	x	x	x	x	End of sem	Lecturer
Course outcome report	x	x	x	х	x	x	x	х	x	x	End of sem	Lecturer
Final Year Project survey	х	x	х	х	х		х		x		End of sem	Faculty
PO survey by final year students	х	х	х	х	х	х	х	х	х	х	End of sem	Faculty
Research training survey			x	x	x	x	x	х	x		End of session	Faculty
Alumni Survey	х	х	х	х	х	х	х	х	х	х	Once/ years	Head of Dept
Employer Survey	х	x	х	х	x	х	х	х	x	x	Once/ years	Head of Dept

115

http://science.utm.my

Bachelor of Science (Industrial Physics)

Awarding Institution	Universiti Teknologi Malaysia
Teaching Institution	Universiti Teknologi Malaysia
Program Name	Bachelor of Science in Industrial Physics
Final Award	Bachelor of Science (Industrial Physics)
Program Code	TS33
Professional or Statutory Body of	Malaysian Ministry of Higher Education
Accreditation	
Language(s) of Instruction	Bahasa Malaysia and English
Mode of Study	Conventional
(Conventional, distance learning, etc)	
Mode of operation	Self-governing
(Franchise, self-govern, etc)	
Study Scheme (Full Time/Part Time)	Full Time
Study Duration	Minimum : 4 yrs
	Maximum : 6 yrs

Turner of Coursestory	No. of se	emester	No. of semester		
Type of Semester	Full Time	Full Time	Full Time	Full Time	
Normal	8	-	14	-	
Short	-	-	-	-	

Entry Requirement

Fulfills University requirements and the following program requirements:

STPM/MATRICULATION/SCIENCE FOUNDATION

Minimum CGPA of 2.80 and passed with Grade B in Physics and Grade B- in ONE (1) of the following subject : Biology/Mathematics/Chemistry

http://science.utm.my

...where great minds are nurtured

S

DIPLOMA

Minimum CGPA of 3.00 and passed with credits in Mathematics in the SPM/equivalent examination.

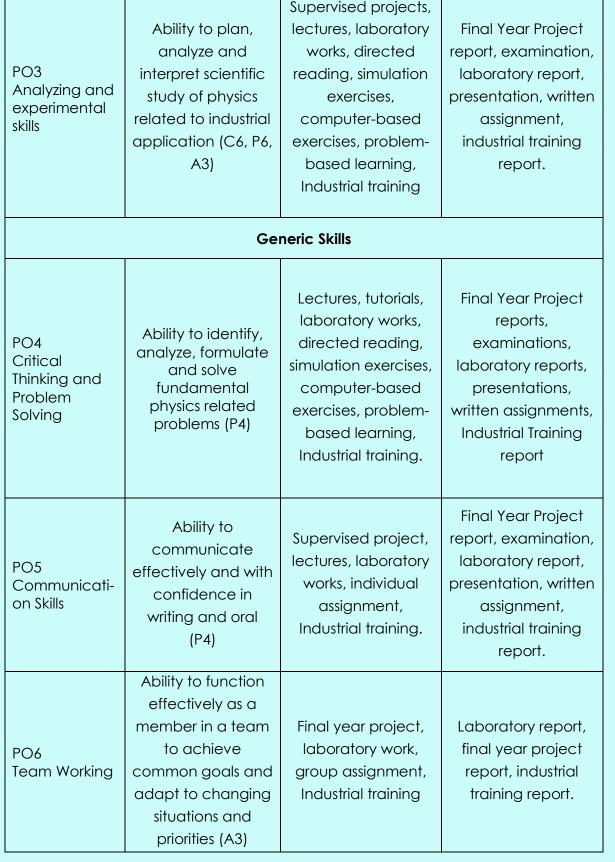
Programme Educational Objectives (PEO)

The objectives of the B.Sc. (Industrial Physics) program are to provide the knowledge, skills and attributes that should be achieved by the graduates for a successful career. The program is designed to:

- 1. Prepare graduates to work as a capable physicist in research and industrial institutions.
- 2. Prepare graduates capable of leading a team and taking higher responsibility in workplace and community.
- 3. Prepare graduates with reputable personality through critical reasoning and analysis, effective written and oral communication skills.
- 4. Prepare graduates with innovative and creative mind to meet new challenges.
- 5. Prepare graduates with professional integrity and capable of managing own learning successfully.
- 6. Prepare graduates that possess entrepreneurship skills and able to foresee towards wealth and job creations.

http://science.utm.my

Program Learning Outcomes


Code	Intended Learning Outcomes	Teaching and Learning Methods	Assessment							
	Technical Knowledge and Competencies									
PO1 Fundamental knowledge of Physics	Ability to acquire knowledge of fundamental laws and principles of physics of undergraduate level (C4, P2, A3).	Lectures, tutorials, seminars, laboratory work, directed reading, active learning.	Examinations, test, quiz, laboratory report, presentation, written assignment, problem-based exercise, project report.							
PO2 Application of physics knowledge and skills	Ability to apply fundamental laws and principles of physics using experimental method, mathematical and computational techniques related to industrial application(C4, P4, A3).	Lectures, tutorials, computer hands-on sessions, laboratory work, Industrial training.	Examinations, laboratory report, presentation, written assignment, problem-based exercise, project report, simulation exercise, industrial training report.							

http://science.utm.my

...where great minds are nurtured

http://science.utm.my

PO7 Lifelong learning and Information Management	Ability to seek and acquire contemporary knowledge, work independently and manage learning time effectively (A3)	Final year projects, individual assignments, industrial training	Final year project report, written assignment, industrial training report.
PO8 Leadership skills	Ability to function effectively and with responsibility as a leader in a team to achieve common goals (A3)	Projects, tutorials, group assignments, laboratory work	Oral presentation, group report.
PO9 Ethics and Integrity	Ability to practice ethical values and integrity in scientific and social interactions, think positively and possessing self- esteem (A3)	Lecture, final year project, industrial training	Written assignments, final year project report, industrial training report.
PO10 Entrepreneurs- hip	Awareness of business, entrepreneurship and career opportunities (P2)	Lectures, project, industrial training.	Written assignment, project report, industrial training report.

120

http://science.utm.my

Classification of Courses

No.	Classification	Credit Hours	Percentage (%)
1	Basic Sciences and Mathematics	20	58.9
2	Program core	56	
3	Program Elective	33	25.6
4	Compulsory university courses a) Humanity b) English Language c) Co-curriculum d) Entrepreneurship	10 6 2 2	15.5
	Total	129	100
	ce program please fill up the fo	llowing classification	on. (Others please
refer to th	e Statutory Body guidelines)		
	Classification	Credit Hours	Percentage (%)
A	Physics Courses: (a) Lectures (b) Laboratory/Workshop/ (c) Final Year Project (d) Industrial training	71 6 6 5	55.0 4.7 4.7 3.8
	Total credit hours for Part A	88	68.2
В	Related Courses: (a) Mathematics (b)Management and marketing (c) Humanities/Ethics (d) Co-Curriculum	12 9 10 2	9.3 7.0 7.8 1.6
	(e) English (f) Entrepreneurship	6 2	4.7 1.6
	Total credit hours for Part B	41	31.8
	Total credit hours for Parts A and B	129	100

Total credit hours to graduate

...where great minds are nurtured

129 credit hours

B.Sc. (Industrial Physics) SSCF

Program structures and features, curriculum and award requirements

The course is offered on full-time mode and is based on a 2- Semester Academic Session with several courses being delivered and assessed in each Semester. Assessment is based on final examination and coursework conducted throughout the semester.

Award requirements:

To graduate, students should:

- Attain a total of 129 credit hours with minimum CPA of 2.00.
- Pass industrial training.
- Complete and pass the undergraduate Final Year Project.

SEMEST	ER 1		SEMESTER 2			
Code	Name of Courses	cr	Code	Name of Courses	cr	
UICI 1012	Islamic and Asian Civilization	2	ULAB 1122	Academic English Skills	2	
SSCM 1023	Mathematical Methods I	3	SSCM 1033	Mathematical Methods II	3	
SSCP 1102	Introduction to Industrial Physics Program	2	SSCP 1163	Sound, Wave and Optics	3	
SSCP 1143	Mechanics	3	SSCP 1223	Modern Physics	3	
SSCP 1153	Electricity and Magnetism	3	SSCM 1523	Linear Algebra	3	
SSCP 1811	Practical Physics I	1	SSCP 1821	Practical Physics II	1	
			University Courses			
			UHAS 1172	Malaysia Dynamics*	2	
			UHAS 1162	Arts, Custom and Belief of Malaysian *	2	
			ULAM 1112	Bahasa Malaysia	2	
Total credit hours 14		14	Total cre	Total credit hours 17		

http://science.utm.my

...where great minds are nurtured

- * UHAS 1172 : Local Student
- * UHAS 1162 : Singapore, Brunei and Indonesia Student
- * ULAM 1112 : Others

SEMEST	ER 3		SEMESTER 4			
Code	Name of Courses	cr	Code	Name of Courses	Cr	
SSCM 1703	Differential Equations I	3	UKQL 3012	Service Learning	2	
SSCP 2213	Nuclear Physics	3	ULAB 2122	Advanced English Academic Skills	2	
SSCP 2313	Basic Electronics	3	SSCP 2113	Thermodynamics	3	
SSCP 2333	Computer Programming	3	SSCP 2413	Solid State Physics	3	
SSCP 2811	Practical Physics III	1	SSCP 2613	Mathematical Physics	3	
UICI 2022	Science, Technology and Humanity	2	SSCP 2821	Practical Physics IV	1	
				ion and Creativity Electives e 2 credits)		
			UKQU 2202	Innovation and creativity	2	
			UHAS 2122	Critical and Creative Thinking	2	
Total cr	redit hours	15	Total credit hours 16			
SEMEST	ER 5		SEMESTER 6			
Code	Name of Courses	cr	Code	Name of Courses	Cr	
SSCP 3113	Electromagnetism	3	SSCP 3343	Instrumentation and Data Acquisition	3	
SSCP 3133	Thermal and Statistical Physics	3	SSCP 3613	Quantum Mechanics I	3	
SSCP 3323	Advanced Electronics	3	SSCP 3821	Practical Physics VI	1	
SSCP 3811	Practical Physics V	1				
ULAB 3162	English for Professional Purposes	2				
	pment/Society/Globalizations (Choose 2 credits)	on	Entrepre	eneurship		
LICCIN						

123

http://science.utm.my

UHAS 2092	Professional Ethics	2			
Management Elective (Choose 3 credits)				ement Elective e 6 credits)	
SHAC 1023	Cost Accounting	3	SHAF 1013	Principles of Marketing	3
SHAD 1033	Principles of Management	3	SHAD 1043	Organizational Behaviors	3
			SSCP 3433	Quality Control	3
Total ci	redit hours	17	Total cre	edit hours	15
SHORT	SEMESTER				
Code	Name of Course	cr			
SSCU 3905	Industrial Training (HW)	5	-		
Total ci	redit hours	5			
SEMEST	ER 7	1	SEMESTE	R 8	
Code	Name of Courses	cr	Code	Name of Courses	Cr
SSCU 4902	Undergraduate Project 1	2	SSCU 4904	Undergraduate Project II	4
Elective	es se 12 credits from a group)		Elective (Choose	s e 12 credits from a group)	
(011000				3	
Group			Group A		
-		3	Group A SSCP 4013		3
Group SSCP	A Nondestructive Testing	3	SSCP	<u> </u>	3
Group SSCP 4123 SSCP	A Nondestructive Testing and Evaluation		SSCP 4013 SSCP	Data Processing	
Group SSCP 4123 SSCP 4133 SSCP	A Nondestructive Testing and Evaluation Industrial Electronics Electronics Circuit	3	SSCP 4013 SSCP 4303 SSCP	Data Processing Process Control	3
Group SSCP 4123 SSCP 4133 SSCP 4143 SSCP	A Nondestructive Testing and Evaluation Industrial Electronics Electronics Circuit Simulation	3	SSCP 4013 SSCP 4303 SSCP 4353 SSCP	Data Processing Process Control Ultrasonic Techniques Electronics Testing and	3
Group SSCP 4123 SSCP 4133 SSCP 4143 SSCP 4333 SSCP	A Nondestructive Testing and Evaluation Industrial Electronics Electronics Circuit Simulation Digital Signal Processing Computer Interfacing	3 3 3	SSCP 4013 SSCP 4303 SSCP 4353 SSCP 4363 SSCP	Data Processing Process Control Ultrasonic Techniques Electronics Testing and Maintenance Communication Electronics	3 3 3

124

http://science.utm.my

Faculty of	
Science	

SSCP 4233	Radiation Protection	3	SSCP 4263	Occupational Health and Safety	3
SSCP 4243	Applied Radiation Physics	3	SSCP 4273	Nuclear Energy	3
SSCP 4293	Radiation Dosimetry	3	SSCP 4283	Environmental Radiation Protection	3
SSCP 4913	Radiobiology	3	SSCP 4203	Medical Radiation Protection	3
Group	C		Group C	:	
SSCP 4623	Material Science	3	SSCP 4463	Corrosion Sciences	3
SSCP 4633	Ceramic and Amorphous Material	3	SSCP 4473	Spectroscopy and Material Analysis	3
SSCP 4643	Polymer Science	3	SSCP 4483	Semiconductor Physics	3
SSCP 4603	Vacuum and Thin Film Technology	3	SSCP 4443	Magnetic Material Microscopy and Material Analysis	3
SSCP 4493	Metallurgy	3	SSCP 4403	Microscopy and Material Analysis	3
Group	D		Group D)	
SSCP 4713	Introduction to Nonlinear Optics	3	SSCP 4553	Applied Optics	3
SSCP 4523	Laser Technology	3	SSCP 4563	Photonics	3
SSCP 4533	Fibre Optics Technology	3	SSCP 4573	Laser in Medicine	3
SSCP 4543	Optoelectronics	3	SSCP 4583	Photometric	3
SSCP 3523	Modern Optics	3	SSCP 4593	Solid State Laser Engineering	3

http://science.utm.my

...where great minds are nurtured

Mapping of Program Learning Outcomes to Courses

С	ourses Offered	FundamentalKnowledge	Application of Physics knowledae	Scientific Study and Research	Critical Thinking and Problem Solvina	CommunicationSkills	Team working	Lifelong Learning	Leadership	Ethics & Integrity	Entrepreneurship
Code	Courses Name	POI	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10
			Core	e Cou	rses				1	1	
SSCP 1102	Introduction to Physics Program	~	~			✓	✓			~	
SSCP 1143	Mechanics	~	~				~				
SSCP 1153	Electricity and Magnetism	~	~			✓					
SSCM 1023	Mathematical Methods I	~	~			✓					
SSCM 1523	Linear Algebra	~	~			✓					
SSCM 1033	Mathematical Methods II	~	~			✓					
SSCM 1703	Differential Equations I	~	~		~						
SSCP 1811	Practical Physics I	~	~	✓	~					~	
SSCP 1163	Sound, Wave and Optics	~	~			✓					

http://science.utm.my

...where great minds are nurtured

SSCP 1223	Modern Physics	~	~				~				
SSCP 1821	Practical Physics II	~	~	~	~		~				
SSCP 2313	Basic Electronics	~	~	~	~						
SSCP 2213	Nuclear Physics	~	~				~				
SSCP 2333	Computer Programming	~	~	~	~						
SSCP 2811	Practical Physics III	~	~	~		~				~	
SSCP 3323	Advanced Electronics	✓	~				~				
SSCP 2613	Mathematical Physics	~	~					~			
SSCP 2413	Solid State Physics	~	~			~					
SSCP 2821	Practical Physics IV	✓	~	~		~	~				
SSCP 3113	Electromagnetism	✓	~					~			
SSCP 2113	Thermodynamics	✓	~				~				
SSCP 3343	Instrumentation and Data Acquisition	✓	~		~						
SSCP 3811	Practical Physics V	✓	~	~	~				~		
SSCP 3821	Practical Physics VI	✓	~	~	~	~					
SSCP 3613	Quantum Mechanics I	✓	~					~			
SSCP 3133	Thermal and Statistical Physics	✓	~			~					
0			-		-						·

127

B.Sc. (Industrial Physics) SSCF

http://science.utm.my

SSCU 4902	Undergraduate Project I	~	~	~	~			~		~			
SSCU 4904	Undergraduate Project II	~	~	~	~	~		~		~			
SSCU 3905	Industrial Training (HW)	~	~	~	~	~	~			~			
	Elective (Choose 33 credits)												
Management Electives Courses (Choose 9 Credits)													
SSCP 3433	Quality Control	~	~					~					
SHAD 1043	Organizational Behaviors	~				~	~	~					
SHAC 1023	Cost Accounting	~				~	~						
SHAF 1013	Principles of Marketing	~			~	~							
SHAD 1033	Principles of Management	~				~	~			~			
	Physics Ele	ctives	(Cho	se 24	Credi	ts fron	n a Gr	oup)	•	•			
			G	roup	A								
SSCP 4123	Nondestructive Testing and Evaluations.	~	~	~		~							
SSCP 4133	Industrial Electronics	~	~	~			~						
SSCP 4143	Electronic Circuit Simulations	~	~	~				~					
SSCP 4333	Digital Signal Processing	~	~	~	~								
SSCP 4393	Computer Interfacing	~	~	~				~					
SSCP 4353	Ultrasonic Techniques	~	~	~						~			
SSCP 4363	Electronics Testing and Maintenance	~	~	~				~					

B.Sc. (Industrial Physics) SSCF

128

S.

http://science.utm.my

Faculty of Science

SSCP 4373	Communication Electronics	~	~	~				~			
SSCP 4303	Process Control	~	~	~			~				
SSCP 4013	Data Processing	~	~	~						~	
			G	roup	В						
SSCP 4913	Radiobiology	~	~			~					
SSCP 4223	Radiation Detection	~	~				~				
SSCP 4233	Radiation Protection	~	~							~	
SSCP 4243	Applied Radiation Physics	~	~		~						
SSCP 4293	Radiation Dosimetry	~	~					~			
SSCP 4253	Medical Physics	~	~						~		
SSCP 4263	Occupational Health and Safety	~	~			~					
SSCP 4273	Nuclear Energy	~	~		~						
SSCP 4283	Environmental Radiation Protection	~	~					~			
SSCP 4203	Medical Radiation Protection	~	~			~					
			G	roup	С						
SSCP 4623	Material Sciences	~	~					~			
SSCP 4633	Ceramic and Amorphous Materials	~	~				~				
SSCP 4643	Polymer Science	~	~					~			
SSCP 4603	Vacuum and Thin Film Technology	~	~				~				
	(

129

UNIVERSITI TE	ENOLOGI MALAYSIA I										
SSCP 4493	Metallurgy	~	~						~		
SSCP 4463	Corrosion Sciences	~	~			~					
SSCP 4473	Spectroscopy and Material Analysis	~	~		~						
SSCP 4483	Semiconductor Devices	~	~					~			
SSCP 4443	Magnetic Materials	~	~		~						
SSCP 4403	Microscopy and Material Analysis	~	~		~						
			G	roup	D	•					
SSCP 4523	Laser Technology	~	~				~				
SSCP 4533	Fibre Optics Technology	~	~					~			
SSCP 4543	Optoelectronics	~	~					~			
SSCP 3523	Modern Optics	~	~			~					
SSCP 4713	Introduction to Nonlinear Optics	~	~						~		
SSCP 4553	Applied Optics	~	~					~			
SSCP 4563	Photonics	~	~			~					
SSCP 4573	Laser in Medicine	~	~				~				
SSCP 4583	Photometrics	~	~		~						
SSCP 4593	Solid State Laser Engineering	~	~							~	
		l	Univer	sity C	ourses	5					
UICI 1012	Islamic and Asian Civilisation	~			~					~	
UHAS	Malaysia Dynamics										

130

http

http://science.utm.my

UICI 2022	Science, Technology and Humanity								
UHAS 2092	Professional Ethics	~			~			~	
UHAS 2023	Technocrat and Development								
UHAS 2122	Critical and Creative thinking	~		~	~				
UKQU 2202	Innovation and creativity								
UHAS 3012	Entrepreneurship and Enterprise Development	~			~				~
ULAB 1122	Academic English Skills	~			✓				
ULAB 2122	Advanced English for Academic Skills	~			~				
ULAB 3162	English for Professional Purposes								
UKQL 3012	Service Learning	~			✓	~			

PO1-PO3 = Technical Skills PO4-PO10 = Generic Skills

Our Uniqueness

- The program is specially tailored to suit the current industrial needs.
- This program allows student to do their industrial placement at local or foreign companies.
- Established links with local and international industries.
- The program allows student to do transfer credit of certain equivalence courses offered by other university locally and overseas.
- Our laboratories are equipped with state of the art facilities and instruments.

http://science.utm.my

...where great minds are nurtured

B.Sc. (Industrial Physics) SSCF

Career Prospects and Career Path

This program prepares graduate to pursue carriers in various industries such as industrial supervisor, human resource manager, instrumentation services manager, quality control and production engineer and Occupational Health Officers. In public sectors, the graduate may pursue carrier as Science Officer, Research Scientist, Meteorologist and etc.

Cross Campus Program

Students are given the opportunity to enroll certain courses in participating universities locally and overseas. The grades and credits up to 1/3 of the total credits of the curriculum are transferable.

Professional Skills Program Certificate (Program UTM Degree ++)

Students are given a chance to enroll in certificate programs offered by SPACE UTM during their semester breaks. Four of such courses are: ISO 9001:2008, OSHE, How to manage your finance, and How to get yourself employed.

Facilities available

A: Laboratories:

- 1. Material Characterization laboratory
- 2. Material Preparations laboratory
- 3. Crystal Growth laboratory
- 4. Teaching Laboratory : Optics 1
- 5. Teaching Laboratory : Optics 2
- 6. Teaching Laboratory : Optics 3
- 7. PCB Laboratory
- 8. Teaching Laboratory : Instrumentation 1
- 9. Teaching Laboratory : Instrumentation 2
- 10. Teaching Laboratory : Instrumentation 3
- 11. Teaching Laboratory : Instrumentation 4

- 12. Applied Optics Laboratory 1
- 13. Applied Optics Laboratory 2

http://science.utm.my

...where great minds are nurtured

- Science
- 14. Applied Optics Laboratory 3
- 15. Sputtering Laboratory
- 16. Thin Film Laboratory
- 17. Atomic Force Scanning Microscope (AFM) Laboratory
- 18. Teaching Laboratory: Material Physics 1
- 19. Teaching Laboratory: Material Physics 2
- 20. Teaching Laboratory: Nuclear Physics
- 21. Astrophysics Laboratory
- 22. Electronic Workshop
- 23. General Workshop
- 24. Tensile Testing Room
- 25. Non-destructive Testing Laboratory
- 26. Material Analysis Laboratory
- 27. Furnaces Room
- B: List of instruments
 - 1. Single crystal growth apparatus
 - 2. CNC machine
 - 3. Photoluminescence Spectometer
 - 4. Ellipsometer
 - 5. High Temperature Furnace
 - 6. Differential Thermal Analyzer(DTA)
 - 7. Vickers Hardness Equipment
 - 8. General mechanical testing machine
 - 9. Hyper pure Germanium Detector
 - 10. Atomic Force Microscope (AFM)
 - 11. Rapid Thermal Process (RTP)
 - 12. Tensile Machine
 - 13. Corrosion Machine

http://science.utm.my

Support for Students and Their Learning

- 1. Two week induction programme for orientation and introductory study skills
- 2. Student Handbook and Guidance Module
- 3. Staff student ratios for teaching of 1:12
- 4. Extensive library and other learning resources and facilities.
- 5. All students are assigned an academic advisor who helps in personal problems and advising the learning program

Methods for Evaluating and Improving the Quality and standards of Teaching and Learning

Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards

1. Students performance in terms of:

- KB/KS/KG Pass/conditional pass/fail
- CPA Cumulative point average
- Graduating students performance
- Graduate on time, GOT
- Completion rate
- Analysis of course performance
- 2. Employability
 - Exit survey
 - Alumni survey
 - Market survey
- 3. Lecturer's performance
 - Teaching evaluation by students (e-PPP)
 - Competency check-list for staff (CS)
 - Annual staff appraisal (e-LPPT)
- 4. Curriculum review
 - Faculty academic committee
 - Industrial training survey
 - PSM survey
 - External examiner reports

http://science.utm.my

...where great minds are nurtured

- CO achievement survey by students
- Students e-Portfolio
- Generic skills evaluation (Performance Criteria Report)
- 5. Delivery system
 - Academic Quality Assurance Committee
 - Customer Satisfaction Index (CSI)
 - Employer Satisfaction Index (ESI)
 - Vice Chancellor's Quality Award (AKNC) audit
 - Malaysian Quality Assurance (MQA) standard

Regulation of Assessment

1. Summary of grades, marks and their interpretation

Marks	Grade	Evaluation Point
90-100	A+	4.00
80-89	А	4.00
75-79	A-	3.67
70.74	B+	3.33
65-69	В	3.00
60-64	В-	2.67
55-59	C+	2,33
50-54	С	2.00
45-49	C-	1.67
40-44	D+	1.33
35-39	D	1.00
30-34	D-	0.67
00-29	E	0.00

2. Role of External Examiners (Visiting Examiners)

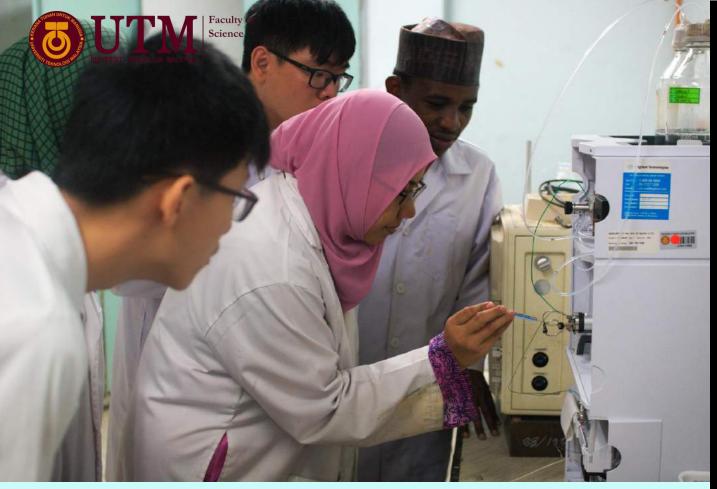
Visiting Examiners are appointed by the Faculty Academic Committee to

- review and evaluate programme curriculum,
- review and evaluate methods of students assessment,
- make necessary recommendations to the Faculty Academic Committee.

http://science.utm.my

...where great minds are nurtured

Assessment Tools


Measurement			L	earn	ing (Outc	ome	S			۲ ۲	ру
Tools	101	LO2	103	LO4	LO5	901	107	801	601	1010	Duration	Action by
e-Portfolio	х	х	х	х	х	х	х	х	х	х	Continuou s	Student
Course outcome survey Employer Survey	x	x	x	x	x	x	x	x	x	x	per semester	Lecturer
Course outcome report	x	x	x	x	x	x	x	x	x	x	per semester	Lecturer
Final Year Project survey	х	x	x	x	x		х		х		per semester	Faculty
PO survey by final year students	х	x	х	x	x	x	х	х	х	х	per semester	Faculty
Industrial training survey			х	x	x	х	х	х	х		Per session	Faculty
Alumni Survey	x	x	x	x	x	x	х	х	х	х	Once/ year	Head of Dept.
Employer Survey	х	x	x	x	x	x	х	х	х	х	Once/year	Head of Dept.

136

http://science.utm.my

137

SYNOPSES OF CHEMISTRY COURSES

SSCC 1003 - Principles of Chemistry

This course aims to strengthenand enhance the knowledge on principles of chemistry before students proceed to more specialized and higher level chemistry courses. The first part of this course exposes students to fundamentals of atoms and molecules and chemical bonding, which are known to be the main sources of chemical processes. The formation of chemical bonding, structure of molecules and properties of compounds are discussed. The second part of this course concentrates on stoichiometry and the relation between reacted species in chemical reactions. The last part of this course emphasizes on the fundamental knowledge of organic chemistry and introduces students to the concept of green chemistry.

SSCM 1023 – Mathematical Methods 1

The course revises and extends Matriculation and STPM topics such as differentiation and integration and includes topics such as complex numbers and differential equations, which may be new to many students. Topics covered include parametric equations, functions, polar coordinates, vectors, and complex numbers. Students will learn how to define functions, and plot the graphs, using the http://science.utm.my

Cartesian as well as polar coordinates; solve problems involving complex numbers and vectors. Additional topics include limits and continuity, differentiation techniques and its applications, integration techniques including improper integrals. Upon completion, the students would have acquired some quite powerful tools of analysis. This is also an introductory course on differential equations. Topic includes first order ordinary differential equations (ODEs). Students will learn how to classify and solve first order ODEs.

SSCM 1103 - Statistics (SSCE/ SSCM)

The course is an introduction to statistics, reviewing some descriptive statistics which includes probability and random variables. Then, the topic of sampling distributions and inferential statistics which include estimation procedures and hypothesis testing is covered. The latter using the method of analysis of variance when more than two means are involved. Also, simple linear regression and contingency table are introduced. Students will be trained in the use of computer software such as Microsoft Excel and SPSS.

SSCM 1303 – Computer Literacy

This course introduces basic computer data processing with no computer background required or assumed. It provides a general knowledge about computing including the what, the do's, the don'ts and its operation. The emphasis is on developing skills in handling Microsoft Office such as MS Word, MS PowerPoint, MS Excel and MS Office. Mathematical Software such as Maple and SPSS will also be introduced.

SSCC 1322 – Introduction to Chemistry Program

The course provides students with the understanding of the role of chemists and the relationship between chemistry and society so that they can make reasoned judgements on issues that are affected by the processes and products of chemistry. The students will be introduced to the role of the chemist in researching, analyzing and developing chemistry knowledge and products for the purpose of benefiting mankind and for sustaining the world. The course also discusses research and development of chemistry and career prospects for chemistry graduates. Part of the course also provide students with the view of the foundation of chemistry through their applications to every day lives specifically in the topics of chemistry and the environment, green chemistry, food chemistry, chemistry of household products, cosmetics and personal care, medicines, drugs and crime. Development of the students' study and generic skills essential for a successful graduate and qualified professional chemist is also addressed.

http://science.utm.my

SSCC 1332 – Introduction to Industrial Chemistry Program

This course introduces students to the definition and the different fields of the Chemistry, and the relationship between chemistry and society. It also provides students with the understanding of the role of the chemists in providing and using scientific knowledge to make reasoned judgements on issues that are affected by the processes and products of chemistry. The students will be introduced to the aspects of chemistry required for analyzing, developing and managing chemical knowledge and products that are beneficial to mankind and sustainable environment. The management of chemistry research and development and career prospects for industrial chemistry graduates will also be discussed. The course also provides the basic foundation of chemistry for applications to every day lives specifically in the topics of chemistry and the environment, green chemistry, food chemistry, chemistry of household products, cosmetics and personal care, medicines, drugs and crime. In addition, the development of the students' study and generic skills essential for a successful graduate and qualified professional chemist is introduced

SSCC 1413 - Chemical Thermodynamics

The course provides the concepts and principle of physical chemistry, starting with a brief discussion on gases, which include the properties and equation of state of ideal and real gas and continues with the principle of corresponding states. The next topics emhasizes on Thermodynamics: Basic concepts of thermodynamics – State functions, heat, enthalpy, internal energy, Gibbs free energy, Helmholtz free energy, heat capacity, First, Second and Third Laws of thermodynamics and Zeroth law of thermodynamics. Topics on the Chemical Equilibria will focus on chemical potentials and phase equilibria, which include phase rule and phase diagram of single component system. The final topic will cover Solutions: compositions, partial molar quantities, ideal solutions, ideally dilute solutions and non ideal solutions.

SSCC 1603 – Organic Chemistry-Functional Groups

This course discusses the fundamental concepts of functional groups in organic compounds. These include aliphatic and aromatic hydrocarbons, alcohols, phenols, organohalogen compounds, ethers, epoxides, aldehydes, ketones and carboxylic acids. In each topic, the students will be introduced to the structures of the functional groups and the nomenclatures (common names and IUPAC names). Physical properties, preparations, reactions and visual tests will also be discussed. Inter-conversion of the related functional groups and their reaction mechanisms are also included.

http://science.utm.my

SSCC 1703 – Inorganic Chemistry

This course introduces the basic concepts of inorganic chemistry, focusing largely on structure, reactivity and periodicity of inorganic substances of the main group elements. The course also teaches the systematic survey of the descriptive inorganic chemistry of the main group elements, including industrial applications and practical uses of important classes of inorganic compounds.

SSCC 1821 - Organic Chemistry Practical I

This course comprises several laboratory experiments related to organic chemistry. Emphasis is on the basic skills of recrystallization, extraction, separation, reflux and distillation. Upon completion, students should be able to assemble and use basic apparatus for experimental organic chemistry and present scientific data in a clear and logical way and produce a scientific report of their work.

SSCC 1841 - Physical Chemistry Practical I

This course is design to increase and strengthen students' understanding on the concepts and principles in Chemical Thermodynamics through experiments conducted in the laboratory. The experiments selected for the course illustrate concepts explored in the Chemical Thermodynamics lecture, enable students to test the relation of theories with experiments, learn experimental methods used by physical chemist, develop laboratory skills and the ability to work independently, learn how to effectively present scientific results and appreciate the limitations inherent in both theoretical treatments and experimental measurements.

SSCC 1851 – Inorganic Chemistry Practical I

This course introduces the basic concepts and skills in inorganic chemistry practical. The experiments are focused on physicochemical properties of elements and compounds of Group IA, Group IIA, Aluminium, Nitrogen, Sulphur and Halogen. This course also exposes students to basic skill of handling chemicals and preparing solution.

SSCC 1901 - Chemistry Practical

This course is designed to improve students' skills in observing chemical reactions, practicing good safety habits, using laboratory apparatus, handling chemicals and performing chemistry experiments. It comprises of chemical laboratory techniques such as glassware calibration, preparation and dilution of solutions, titration, separation, extraction, including data analysis and reporting. Upon completion of the course, students should be able to apply appropriate general chemistry

http://science.utm.my

Synopses of Chemistry Courses

laboratory techniques, draw conclusions and present scientific data in a clear and logical manner.

SSCC 2243 - Principles of Analytical Chemistry

This course provides a basic introduction to quantitative chemical analysis, with emphasis on classical chemical methods. The course introduces general analytical techniques that include sampling, sample preparation, data analysis and method validation; and classical analytical methods that include gravimetric and volumetric techniques. The volumetric method will emphasize on acid-base, precipitation, complexation and redox titrations.

SSCC 2312 - Laboratory Safety and Management

The emphasis of this subject is to expose the students to the fundamental concept and theory related to Laboratory Organization and Laboratory Design, Material and Chemical managements, Dangerous Instrumentations, Safety in Laboratory and Chemical Store, Safety Procedures and Documentations. The basic knowledge on Quality Laboratory System, Legal and Environmental Act 1974, Chemistry Act 1975, Machine and Factory Act 1967 and Occupational Safety and Health Act 1994 will also be introduced.

SSCC 2453 - Chemical Kinetics and Electrochemistry

This course presents the fundamental concept and the application of chemical kinetics and electrochemistry. The chemical kinetics study includes rate and mechanism of reactions, orders of reactions, rate laws and the comparison of theories with experiments for simple gas reactions, reactions in solution, complex reactions, homogeneous catalysis, chain reactions and rapid reactions. While electrochemistry includes the electrolyte conductivity, theory on conductivity, activity, transport numbers, electrochemical cells and electrode processes and kinetics.

SSCC 2473 - Molecular Spectroscopy

The emphasis of this course is to expose the students to the fundamental principles of molecular spectroscopy focusing on molecular energy levels and their interaction with electromagnetic radiation, spectral outputs and their interpretation in relation to molecular structure. The branches of spectroscopy covered include rotational spectroscopy, vibrational spectroscopy (IR and Raman), electronic spectroscopy (absorption and emission) and spin resonance spectroscopy (NMR and ESR). The general spectrometer components and the

requirements for high resolution spectrum of FTIR and FT NMR will be discussed to represent the practical aspects of this subject.

SSCC 2613 - Organic Chemistry-Biomolecules

This course introduces the classifications, synthesis and reactions of biomolecules such as carbohydrates, peptides, proteins and lipids. It will also emphasise on the three-dimensioal structures and fundamental concepts of stereochemistry. Infrared spectroscopy is included as a technique in characterizing the functional groups of compounds.

SSCC 2713 – Coordination Chemistry

This course introduces the different types of ligands used in coordination chemistry and how their different modes of coordination lead to isomerism. The systematic way of naming metal complexes will be outlined. The different ideas on bonding in metal complexes will be discussed and this will help students to understand the advantages and limitations of each theory. The electronic spectra and colour properties of the metal complexes will be explained. The substitution mechanistic pathways of metal complexes and its kinetics and how this mechanism is determined experimentally are illustrated. Spectroscopic characterization techniques of coordination compounds are also covered.

SSCC 2841 - Physical Chemistry Practical II

This course is design to increase and strengthen students' understanding on the concepts and principles in Chemical Kinetics and Electrochemistry through experiments conducted in the laboratory. The experiments selected for the course illustrate concepts explored in the Chemical Kinetics and Electrochemistry lecture, enable students to test the relation of theories with experiments, learn experimental methods used by physical chemist, develop laboratory skills and the ability to work independently, learn how to effectively present scientific results and appreciate the limitations inherent in both theoretical treatments and experimental measurements.

SSCC 2851 – Inorganic Chemistry Practical II

The emphasis of this course is to provide the students with an appreciation for the synthesis and characterizations of coordination compounds. It is also aimed to provide the students with a degree of competence in the laboratory skills required for accurate and precise chemical analysis. The experiments selected for this course include developing skills in the synthesis and isolation of coordination compounds or metal complexes with different kinds of ligands followed by

http://science.utm.my

characterization by conventional methods such as gravimetry, titrimetry and melting point, including characterization techniques used by coordination chemists such as UV-visible, NMR and FTIR spectroscopies. The principles of the spectroscopic methods are described and discussed with respect to their respective spectral outputs and interpretation obtained from the as-synthesized coordination compounds.

SSCC 2861 - Analytical Chemistry Practical I

The course introduces students to Good Laboratory Practices in classical (wet chemistry) methods. Experiments are designed to complement the topics covered in Principles of Analytical Chemistry (SSCC 2243), which include gravimetric and volumetric techniques. Part of the course consists of a short laboratory project.

SSCC 2891 - Organic Chemistry Practical II

This course introduces students to the techniques and knowledge required in the synthesis or preparation of isomeric compounds, *N*-heterocyclic compounds, derivative of glucose, azo dyes and the isolation, purification and reaction of lipid. Students will be exposed to the infrared spectroscopic technique as a tool to determine the functional groups of the synthetic and isolated compounds.

SSCC 3233 - Instrumental Analysis

This course introduces the principles, instrumentation, and application of spectroscopic and chromatographic methods used in analytical chemistry. Emphasis is on ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, mass spectrometry, atomic absorption spectroscopy and emission spectroscopy, liquid chromatography and gas chromatography.

SSCC 3243 - Separation Methods

This course introduces the basic principles, instrumentation and applications of separation methods commonly used in chemical analysis. A general overview and classifications of common separation methods is first given followed by their basic principles of separation. Major separation methods and its applications discussed include extraction, chromatography and electrophoresis.

SSCC 3323 - Principles of Polymer Science

This course is to introduce the students about polymers as materials with characteristic mechanical and physical properties, which are controlled by the structure and the methods of synthesis. Topics covered in the course are polymer synthesis, the reaction of monomers to form polymers, copolymers or terpolymers

http://science.utm.my

either by chain-growth, step-growth (polycondensation), ring-opening polymerisations. Polymerization mechanisms and polymerization kinetics related to degree of polymerization and molecular weight control and molecular distributions will be discussed in detail. Physical aspect of polymer (polymer structures, morphology, amorphous state and glass-transitions temperature Tg, crystalline state and melting temperature Tm) will also be discussed. The inter-related molecular weights and molecular weight distributions on morphologies and their effects on the processing and final properties of polymers will be emphasized, as well as the structure-properties relation that influenced the overall properties of a polymer.

SSCC 3423 Industrial Chemical Process

This course is designed to discuss the basic principles involved in chemical industrial processes. It involves dimensional analysis, material and energy balances, basic unit operations, basic separation processes and process controll. Dimension analysis stresses on the basic units, dimensions, conversions of units which is usually applied in scientific and engineering calculations. Material and energy balances discuss the fundamentals of material and energy balances calculations in non-reactive and reactive systems as well as recycle, by pass and purge on chemical process. Basic unit operations and separation processes include type of reactors, heat exchanger, distillation, absorption and filtration processes. Process controll discuss the process flow, flow-diagram and automation on chemical industries.

SCC 3463 - Quantum Chemistry

The emphasis of this course is to expose the students to the fundamental principles and techniques of quantum chemistry in the description of atom and molecule in terms of electronic structure and properties. This course is introduced by discussing wave particle behaviour of electron, Schrodingerwave equations and its applications to a particle in a box, harmonic oscillator, rigid rotor, hydrogen atom, and hydrogen like atoms. It continued further on the combination of atoms to form molecules; valencebond and molecular orbital theories; Huckel approximation; approximate techniques: variation and perturbation.

SSCC 3533 - Application of Computer in Chemistry

This course introduces the application of computer methods in chemistry. Topics discussed include regression analysis, multivariate calibration, pattern recognition, experimental design and optimisation, handling of chemical structures, chemical databases, molecular modelling, and artificial intelligence. Applications of these

http://science.utm.my ...where great minds are nurtured

methods in data analysis, structural searching, prediction of properties and drug design are discussed.

SSCU 3623 - Research Methology and Data Retrieval

This course teaches the students the principles of research methodology and information retrieval. Topics include research philosophy and objectives, literature study and review, choosing and defining research problems and design, preparing and writing research proposals, technical report writing (the elements of technical writing), types of technical report writing, dissertation writing, public speaking (preparation and presentation) and information retrieval (search strategies). Presentation of assignment is also an important component in this course.

SSCC 3643 – Application of Spectroscopy

This course discusses the theory and application of infrared (IR), nuclear magnetic resonance (NMR), ultraviolet (UV) spectroscopies and mass spectrometry (MS) for structural determination of organic compounds. In addition, elemental analysis for determination of molecular formula and index of hydrogen deficiency will be discussed.

SSCC 3871 - Analytical Chemistry Practical II

The course introduces students to laboratory work related to instrumental methods of analysis. Experiments complement topics in Instrumental Analysis (SSCC 3233) that include techniques in ultra violet-visible spectroscopy, atomic absorption spectroscopy, fluorescence spectroscopy, and flame emission photometry as well as liquid chromatography and gas chromatography.

SSCU 3905 – Industrial Traning

Students enrolled in this program are required to undergo industrial training either at a local industry/company or abroad to gain working experience from the industry. The industrial training gives the students the opportunity to acquire technical knowledge and practical skills not taught in classrooms. Through the industrial training, students will also have the opportunity to work with industrial workers and professionals, which will enable them to improve their communication skills and team working. The students will be supervised by both faculty and industrystaff. The students will be assessed based on the final report submitted to the faculty at the end of the training as well as the reports from both supervisors.

SSCU 3915 - Research Training

Students enrolled in this program are required to undergo research training either at a local research centres/institutes or abroad. The research training enables the students to experience chemistry research in real world setting, whereby the equipment, instrumentation and work conducted are generally more advanced. The students will be exposed to a different research environment and has the oppurtunity to interact with researchers in different fields. Both faculty and the research centers/institutes staff will supervise the students. The students will be assessed based on the final report submitted to the faculty at the end of the training as well as the reports from both supervisors.

SSCC 4223 - Environmental Science

The subject will focus on the fundamental concepts of environmental studies and sustainability. Emphasis will be given on sustaining the ecosystem, biodiversity, natural resources and environmental quality. Awareness and practical application of green technology will also be discussed.

SSCC 4233 - Analytical Electrochemistry

This course is designed to provide students with an understanding of the principles of analytical electrochemistry. Fundamental aspects of electrode reactions and structure of the interfacial region and application of electrode reactions to electrochemical characterization are included. Major electroanalytical techniques will be discussed including potentiometry, amperometry, polarography, cyclic voltammetry, pulse and differential pulse voltammetry, square wave voltammetry, and stripping analysis. Introduction to the principles of chemical and biochemical sensors will also be discussed.

SSCC 4253 - Food Analysis

The subject is designed to provide students with an understanding of the principles and procedures for the analysis of the chemical components of food. Introduction to food chemistry, food regulations, sample handling and preparation for data collection, reporting and analysis of data are included. Key analytical and separation techniques are discussed, including proximate analysis, classical techniques, and relevant modern instrumental techniques.

SSCC 4263 – Thermal Analysis

This course is designed to provide students with an understanding of the principles and application of thermal analysis methods. Key thermal analysis methods such as Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and

http://science.utm.my

Differential Scanning Calorimetry (DSC) are discussed, including instrumental system, factors affecting measurements, and the effect of sample properties on thermograms. Other thermal analysis methods discussed include microthermal analysis, thermomechanical analysis and dilatometry. Discussions will also cover interpretation of thermograms and application of the thermal analysis methods.

SSCC 4273 – Forensic Science

This course provides an introduction to forensic science and the legal aspects. The roles of forensic scientist as crime scene investigator to laboratory analyst and finally as an expert witness in court are highlighted. Forensic analyses of paints, glass, hairs & fibres, fire debris, question document, drugs of abuse, blood, semen and saliva are covered in this course.

SSCC 4293 - Radioanalytical Chemistry

This course focuses on the principles of radioactivity and their applications in analytical chemistry including use of radiotracers in quantitative work. Error in techniques used will also be covered. Some of the analytical approaches discussed are isotope dilution analysis; radiometric titrations including selection of radiotracers. Some techniques of using radiotracers such as liquid scintillation techniques, its principles and applications will be discussed. Other related techniques include radioimmunoassay, neutron activation analysis, radiocarbon dating and geological chronology, radiochromatography. Some industrial applications in industry will also be covered..

SSCC 4353 - Consumer Chemistry

The course introduces the students to the basic concepts of chemistry and examines the role of chemistry in consumer products. These products include foods, cosmetics, household products, pharmaceuticals, and chemicals related to agriculture. Legislation and current concerns and issues will also be examined. Upon completion, students should be able to identify chemical formulations and functions of chemical components, formulate new products or make modifications on chemical based consumer products. Students should be able to develop and apply knowledge in understanding the importance of using safe chemicals for consumer products.

SSCC 4363 - Green Chemistry

This course introduces students to the principles and application of Green Chemistry, which was developed based on historical cases and current research. Topics include evaluation methods for environmental and human health impact,

http://science.utm.my

alternative reagents in designing safer reactions and chemicals, green chemical synthesis, green chemical products, and economic advantages to Green Chemistry. Real-world cases in green chemistry will be used to illustrate the goals of Green Chemistry.

SSCP 4403 Microscopic and Material Analysis

This is an introductory course on microscopic techniques that deals with the basic working principles and schematic diagram of construction of various microscopes, namely, light microscope, electron microscope, x-ray microscope, acoustic microscope, field ion microscope, and scanning probe microscope. For each type of microscope, particular reference is given to the resolving power, sample preparation, and analysis of the micrograph. In general, this course will provide the students with necessary knowledge on the choice of microscope for study of materials.

SSCC 4443 – Chemical Reactions Process

This course is designed to prepare students to formulate and solve material and energy balances on chemical process systems. It lays the foundation for courses in thermodynamics, unit operations, kinetics and process dynamics. It introduces the engineering approach to solving process-related problems - breaking a process down into its components, establishing the relations between known and unknown process variables, assembling the information needed to solve for the unknowns using a combination of experimentation, empiricism and the application of natural laws to obtain the desired solution.

SSCC 4473 – Solid State Chemistry

This course exposes students to solid state chemistry beginning with introduction to simple crystals structures, symmetry, lattices and units cells, crystalline solids, and lattice energy. Following this, the main topic discussed include X-ray Diffraction and its use in solving single crystal structures; various preparative methods in solid states; bonding in solids states and electronic properties and electronic conductivity in simple metals, semiconductors and doped semiconductors; defects and nonstoichiometry; ionic conductivity in solids, solid electrolytes; non-stoichiometric compounds and electronic properties of non-stoichiometric oxides; application of physical techniques in characterization of inorganic solids; optical properties of solids; magnetic and dielectric properties of materials; phase diagram and its

http://science.utm.my

Synopses of Chemistry Courses

interpretation; relationship between structure, physicochemical and mechanical properties of materials including zeolites and related structures

SSCC 4483 - Corrosion Chemistry

This subject introduces the concept of corrosion; which includes definition and importance of corrosion, the driving force for corrosion reactions, the rates of electrochemical reactions, rates of electrochemical corrosion reactions, characteristic forms of electrochemical corrosion, prevention and control of electrochemical corrosion and high temperature corrosion/oxidation and its control. Upon completion, students should be able to develop and apply knowledge to describe the electrochemical corrosion processes and its prevention. Students should also be able to rationalize the importance of corrosion effect in industrial application and our lives.

SSCC 4493 – Surface and Colloid Chemistry

This course is offered as an elective whereby students are introduced to the fundamentals of surface and colloid chemistry. The fundamental concept of the different types of surfaces and interfaces are discussed to better understand surface phenomenon including physical and chemisorption processes, classification of adsorption isotherm, capillary rise, wetting and spreading. For colloid chemistry, the course will discuss the classification of colloid, mechanism of colloidal formation, colloidal phenomena and colloidal stability. The course will enable students to develop and apply knowledge in describing several absorption models and colloidal systems.

SSCC 4603 – Medicinal Chemistry

This course discusses the general principles of medicinal chemistry with emphasis on the molecular interaction of drugs with biological systems. The functional groups commonly found in drugs are reviewed with respect to their nomenclature and chemical reactivity. The absorption and metabolism characteristics are then related to the physicochemical properties of these functional groups. The theories and principles of drug-receptor interactions and drug design are presented, as well as the general principles of drug metabolism. To illustrate current drug developments, this course will utilize examples from chemical biology, bioorganic chemistry and drug design.

SSCP 4603 – Vacuum and Thin Film

Conductance and throughput. Vacuum gauges and pumps. Nucleation, Physical Vapour Deposition, Chemical Vapour Deposition, Characterization Measurements,

Properties – structural, optical, electrical and magnetic, Novel Properties – quantum effect, giant magnetoresistance, Thin Film Solar Cells, Layered Magnetic Nanostructures – GMR sensors, Single-Electron Devices

SSCC 4653 – Organic Synthesis

This course discusses the interconversion of various functional groups and the formation of C-C bonds; which represent two crucial areas in organic synthesis. Students will be introduced to the use of protecting groups and oxidation/reduction in the synthetic methodology. The retrosynthesis approach in organic synthesis will also be elaborated. Specific topic on carbonyl functionalities will be discussed which highlight the related condensation reactions. Further discussion on rearrangement, pericylic, asymmetric synthesis and metal-catalysed reactions will be emphasized. Throughout the course, the usefulness of the synthetic methods will be related with their applications in various research and industry. Upon completion, the students should be able to plan synthetic strategy and pathway using both functional interconversion and C-C bond formation.

SSCC 4663 - Natural Products Chemistry

This course introduces the fundamental concepts of natural products chemistry. The biosynthetic pathway of the secondary metabolites such as terpenes, flavonoids and alkaloids will be discussed. Isolation, classification and structural identification of terpenes, flavonoids and alkaloids will be covered. Reaction and synthesis associated with these compounds will be further examined.

SSCC 4673 - Industrial Organic Chemistry

The course is intended to expose the students to organic chemicals in industries. The scope includes the organic chemicals used in foods, pharmaceuticals, cosmetics, agro-based industries, petroleum and polymers. The synthesis and analysis of some selected chemicals will be discussed. The course will involve industrial chemicals such as flavours and fragrances; vitamins; antioxidants; dyes and colouring materials; common drugs including antibiotics, anti-inflammatory, anticancer, antihypertensive and antidepressant; soaps and detergents; insecticides, fungicides and pesticides. Basic knowledge and uses of phytochemicals from herbs and spices will be introduced. In addition, general industrial chemicals for petroleum and polymers will be included.

SSCC 4683 - Biotechnology

This course aims to give chemistry major students an understanding of the multidisciplinary nature of biotechnology. It includes understanding some of the basic principles of microbiology, biochemistry and engineering aspects of bioprocesses. The course mainly focuses on industrial and environmental aspects of Biotechnology where chemist can play an important role. Introduction to microbiology was first given to familiarize students with the terms commonly used in Biotechnology. Topics include classification of microorganisms; prokaryotic and eukaryotic cells; biomolecules, DNA as genetic material, bacterial growth and metabolism, microbial culture systems in bioreactors: batch, fed batch and continuous systems, and cell immobilisation. Some insights into industrial biotechnology: production of antibiotics, amino acids; organic acids, solvents and enzymes. While environmental biotechnology touches on bioremediation, sewage system and wastewater treatment processes and metal recovery. Also a brief introduction on animal cloning and stem cells technology as a special interest topic.

SSCC 4693 – Metabolism of Biomolecules

This course discusses the metabolism of biomolecules such as carbohydrates, lipids and proteins. Discussion includes catabolism and anabolism for each biomolecules. Production of ATP from biomolecules based on Chemiosmotic theory will be discussed. Inborn errors of metabolism related to specific biomolecules will be highlighted.

SSCC 4723 - Organometallic Chemistry

The course teaches the chemistry of organometallic compounds. It includes the definition and classification of the compounds, 18-electron rule and its limitations, types of bonding and methods of preparation followed by characterization of organometallic compounds. The discussion continues with the type of reactions and application of organometallic compounds as catalysts and others; metal-carbonyl complexes: synthesis, structure, reactions and applications; clusters compounds and their structure and isolobal relationship.Organolanthanide and organoactinide chemistry. The application of bioorganometallic compound: coenzyme B12, and nitrogen fixation.

SSCC 4733 - Radiochemistry

The course is focussed on the fundamentals of nuclear structure and physicochemical properties in radioactivity. The mass-energy relationship presented in this course includes the binding energy of nuclear reactions - energetic of nuclear reactions, cross-section and types of reactions. Radioactivity phenomena as

http://science.utm.my

explained in rates of nuclear decay, determination of half lives and growth of radioactive products are covered. Quantitative aspect of this course will be discussed under units of radioactivity, detection of radiation and instrumentation in radiochemistry. The study of the interaction of radiation with matter is included. Basic principles of nuclear reactors are also presented along with applications of radionuclides in chemistry and other related areas. Some aspects of nuclear energy generation, nuclear fuel reprocessing and nuclear waste disposal will also be discussed.

SSCC 4743 - Materials Chemistry

This course intended to give an overall introduction to the importance of materials and how chemistry controls its properties. Types of materials include metals, semiconductors, superconductors, ceramics, glass, composites, polymers and nanomaterials. The different types of bonding exist in materials in terms of bonding such as ionic, covalent, metallic, van der Waals and H-bond are explained. The general properties of materials such as mechanical, electrical, optical and thermal will be discussed. The relationship between the structures of materials with respect to their physicochemical properties will be examined. The synthesis, processing, fabrication and application of industrial materials are highlighted. Various characterization techniques of solid materials shall be discussed.

SSCC 4753 – Catalytic Chemistry

This course introduces students to the role of catalysts in chemical and biological processes. Kinetics and reaction mechanism of catalysed reactions and structural aspects of catalysts will be highlighted. Emphasis is on the factors that influences catalysts reactivity in both homogeneous and heterogeneous catalysis. Different methods of preparation and characterization of catalytic material and the underlying principles with regard to industrial application of the catalyst will be discussed. Upon completion, students should be able to develop and apply knowledge in explaining the principles of catalysis in industrial processes, identify methods of preparing and characterizing catalysts such as supported metal catalysts, zeolites and metal oxides.

SSCC 4763 – Nanochemistry

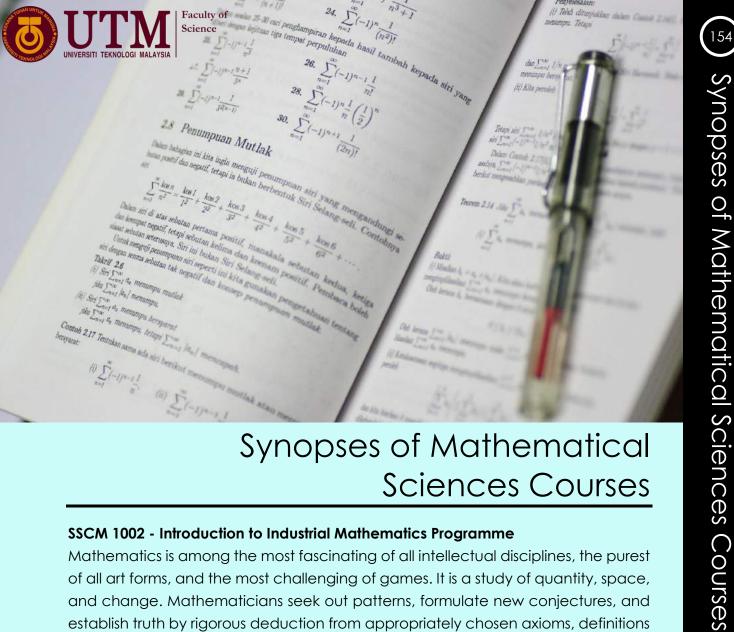
The primary objective of this course is to provide a broad foundation of nanochemistry in the field of nanotechnology, so that students are prepared to continually learn about this emerging field. New era about nanomaterials is coming because of special physicochemical and magnetic properties of materials underlying nanoscale. This course mainly introduces novel nanomaterials and

http://science.utm.my

instrumental methods for materials analysis. Introduction to nanoschemistry and nanotechnology, the chemistry of nanofabrication; top-down (Lithography, laser ablation, ball-milling) and bottom-up (Metal reduction, sol-gel, hydrothermal, SAM and CVD), preparation methods for highly porous materials, surface modifications, characterization of nanomaterials. (UV, TEM, SEM, XRD), perspectives of nanochemistry in environmental applications. Based on this knowledge, students can have ideas about controlling physicochemical properties of nanomaterials to solve the problems specifically in the environmental treatments.

SSCC 4773 - Inorganic and Organometallic Polymer

The course is intended to give an understanding of the basic principles of inorganic and organometallic polymers. It will emphasise on the physical properties, chemical synthesis, the characterisation and practical applications of the polymers. All the major inorganic and organometallic polymers such as polyphosphazenes, polysilanes, polysiloxanes, polyferrocenes and other polymers will be dealt with.


SSCU 4902 - Undergraduate Project I

The Undergraduate Project I is the first part of the students' final year project. The final year project gives the students the opportunity to demonstrate what they have learned throughout the course. In the Undergraduate Project I, students are required to identify a project (research) and a supervisor in an agreeable field of chemistry. Apart from an initial briefing session on the Undergraduate Project I and laboratory safety requirement, there are no formal lectures to attend. Teaching consists of regular individual/small group meetings between student and supervisor to discuss the progress of the project. urvey/review activities, construct research methodology, built-up results and discussion (if manageable and sufficient data are obtained), anticipate the expected results (if no data were obtained), and write the conclusion and references.

SSCU 4904 - Undergraduate Project II

The Undergraduate Project II is an extension of the Undergraduate Project I.Students are required to complete the experimental work of the project identified during the Undergraduate Project I and document their findings. The students document the finding of their research in the form of project proceeding and final year project report. The students will be assessed based on the report and proceeding submitted, project presentation, attendance and laboratory work.

Synopses of Mathematical Sciences Courses

SSCM 1002 - Introduction to Industrial Mathematics Programme

Mathematics is among the most fascinating of all intellectual disciplines, the purest of all art forms, and the most challenging of games. It is a study of quantity, space, and change. Mathematicians seek out patterns, formulate new conjectures, and establish truth by rigorous deduction from appropriately chosen axioms, definitions and theorems. Mathematics is applied as an essential tool in many fields, including natural sciences, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and operational research. Industrial mathematics is one of the strands of applied mathematics aimed at industries. The study of mathematics is not only exciting, but important: mathematicians have an opportunity to make a lasting contribution to society by helping to solve problems in such diverse fields as medicine, management, economics, government, computer science, physics, psychology, engineering, and social science. This course aims at exposing students to this wonderful world of mathematics. The course also enhances conceptual understanding in elementary mathematics such as indices, logarithm, radicals, trigonometry, vectors, complex numbers and

http://science.utm.my

mathematical induction. Upon completion, the students would have acquired some firm basic tools to pursue further mathematics.

SSCC 1003 - Principles of Chemistry

This course strengthens principles of chemistry knowledge before proceeding to more specialized and higher levels chemistry subjects. The first part of this course exposes students to fundamentals of atoms and molecules and concepts which are known to be the main sources of chemical processes. The formation of chemical bonding, structure of molecules and properties of compounds are discussed. The second part of this course concentrates on stoichiometry and the relation between reacted species in reactions. The last part of this course strengthen student in term of fundamental knowledge of organic chemistry and introduces students the ideas of green chemistry concept.

SSCM 1012 – Introduction to Mathematics Programme

Mathematics is among the most fascinating of all intellectual disciplines, the purest of all art forms, and the most challenging of games. It is a study of quantity, space, and change. Mathematicians seek out patterns, formulate new conjectures, and establish truth by rigorous deduction from appropriately chosen axioms, definitions and theorems. Mathematics is applied as an essential tool in many fields, including natural sciences, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and operational research. Industrial mathematics is one of the strands of applied mathematics aimed at industries. The study of mathematics is not only exciting, but important: mathematicians have an opportunity to make a lasting contribution to society by helping to solve problems in such diverse fields as medicine, management, economics, government, computer science, physics, psychology, engineering, and social science. This course aims at exposing students to this wonderful world of mathematics. The course also enhances conceptual understanding in elementary mathematics such as indices, logarithm, radicals, trigonometry, vectors, complex numbers and mathematical induction. Upon completion, the students would have acquired some firm basic tools to pursue further mathematics.

SSCM 1023 – Mathematical Methods I

The course revises and extends Matriculation and STPM topics such as differentiation and integration towards hyperbolic and trigonometric inverses.

http://science.utm.my

Applications in computing arc length and area of surfaces of revolution are also included. Other topics covered are improper integrals, parametric equations, polar coordinates, and multivariable functions. This later topic serves as an introduction to three dimensional calculus which students will learn in Mathematical Methods II. The chapter will merely devoted to sketching surfaces and finding limits of two variable functions. It is hoped that upon completion of the course, students should have acquired some firm basic tools to pursue further mathematics.

SSCM 1033 – Mathematical Methods II

This course is a continuation of SSCM 1023. Four main topics are covered, namely sequences and series, partial derivatives and its applications, and multiple integrals. Students will learn how to recognize the appropriate test of convergence for sequence and series, find partial derivatives and evaluate double and triple integrals. The use of cylindrical and spherical coordinates is also highlighted. Applications include finding the area, volume, mass, centre of gravity and moments of inertia of a solid.

SSCM 1103 - Statistics

The course is an introduction to statistics, reviewing some descriptive statistics which includes probability and random variables. Then, the topic of sampling distributions and inferential statistics which include estimation procedures and hypothesis testing is covered. The latter using the method of analysis of variance when more than two means are involved. Also, simple linear regression and contingency table are introduced. Students will be trained in the use of computer software such as Microsoft Excel and SPSS.

SSCP 1143 - Mechanics

This course mainly discusses motion of a body or a system. Beginning with the basic and derived physical quantities and vector as mathematical tool, various types of motion such linear, free-fall, projectile, circular, rotational and simple harmonic motions are described. Other topics such as equilibrium, elasticity, gravitation and fluids mechanics illustrate the application of a body in motion under the influence of a force.

SSCM 1303 – Computer Literacy

This course introduces the Internet, LateX, mathematical packages and programming for prospective mathematics majors. Students learn the efficient use of spreadsheets: Microsoft Word Math Add-Ins for writing and solving mathematical equations and Microsoft Excel for analysing data. In addition, SPSS, a statistical

http://science.utm.my

package that is popular in social science analysis is introduced. An introduction to R, an open-sourced statistical package in which some basic programming is presented.

SSCM 1313 – Computer Programming

This course will provide the basic programming skill in Computer C++ Programming. Topics include flowcharts, algorithms, basic syntax in C++, procession of compiling, pre-processing components, operators, loops, branches, data/variable types, strings, arrays, functions, pointer and structure. Students will learn to write an efficient and maintainable programs using Microsoft Visual C++ software. The lectures are supplemented with the non-trivial lab exercises.

SSCM 1523 – Linear Algebra

The course begins with the study of matrices and determinant. Starting with simple matrix operations, elementary row operation and inverses, and determinant of matrices. Solve the linear system using inverse of matrix, Crammer's rule, Gauss and Gauss-Jordan elimination method. Next, the focus is on the vector spaces, subspace, linear independence, spanning sets, bases, coordinate vector and change of basis, orthogonal bases, and the Gram-Schmidt process. Next, a discussion of linear transformation and matrices, as well as the kernel and range is studied. Finally, finding the eigenvalues and eigenvectors and use them in diagonalization problem.

SSCM 1703 – Differential Equations I

This is an introductory course on differential equations. It provides students with basic concepts and theories as well as analytical tools for solving ordinary differential equations (ODEs). Topics include first order ODEs, linear ODEs with constant coefficients, and Laplace transforms.

SSCM 2043 – Mathematical Method II

This course is a continuation of SSCM 1023 and SSCM 1033. This course comprises of three parts. The first part is concerned with even, odd, periodic and orthogonal functions, its properties, Fourier series of periodic. The second discuss about partial differential equations (PDE). Linear and nonlinear first order equations. Classification of linear second order equations. Heat equations in one—dimensional and d'Alembert. The last part deals with complex variables. This part of the course introduces calculus of functions of a single complex variables. Topics covered

http://science.utm.my

include the algebra and geometry of complex numbers, complex differentiation and complex integration.

SSCM 2103 – Mathematical Statistics

The course is about mathematical statistics which covers set theory and probability, univariate and bivariate random variables, transformation of variables, mathematical expectation for univariate and bivariate random variables, Chebychev's Inequality, moment generating function for univariate and bivariate variables, order statistics, limiting distribution. Upon completion students should be able to understand the mathematical concepts behind the statistical methods.

SSCM 2423 – Numerical Method I

This course discusses various numerical methods that can be used to solve problems involving non-linear equations, linear systems, interpolation and curve fitting, numerical differentiation and integration, eigenvalue problems, ordinary differential equations and partial differential equations.

SSCM 2613 – Advanced Calculus

A formal study of real numbers, subsets of the real line, functions, sequences and series. Functions of a single variable are studied with regards to types, limits, continuity, differentiability and integrability. Students learn to formulate and rigourously prove theorems on analysis using various kind of methods such as contradiction, induction, contrapositive etc. Prior knowledge of simple logic of truth is helpful for quick understanding but not essential

SSCM 2673 – Discrete Mathematics

This course introduces the applications of discrete mathematics in the field of computer science. It covers sets, logic, proving techniques, combinatorics, functions, relations, graph theory and algebraic structures. These basic concepts of sets, logic functions and graph theory are applied to Boolean Algebra and logic networks, while the advanced concepts of functions and algebraic structures are applied to finite state machines and coding theory.

SSCM 2773 – Differential Equations II

This course continues the Differential Equations I course, with the focus on second order ordinary differential equations with variable coefficients and systems of first order equations. Analytical solution methods, and qualitative approach to autonomous systems will be introduced. To further strengthen students' notions on mathematics, basic theory of linear systems and first order IVPs also are covered.

http://science.utm.my

Upon completion students should be able to demonstrate understanding of the theoretical concepts and select and use appropriate techniques for finding solutions to second order differential equations and systems of linear first order differential equations.

SSCM 2793 - Vector Calculus

Vector valued Function: Definition of vector valued function, position vector and graph, vector differentiation and Integration, unit tangent vector, unit normal vector, unit bi normal vector, curvature, radius of curvature, torsion and Frenet-Serret formulas. Del operator, gradient, divergence, curl, normal vector to the surface, directional derivative, rate of change. Line Integral: line integral in two and three dimension, work, Green's Theorem, potential function and conservative force field. Surface Integral: surface integral for scalar functions, surface area, surface integral for vector functions, Gauss's Theorem, and Stokes's Theorem.

SSCM 2803 – Mathematical Modelling I

Introduces the basic principles of mathematical modelling. Emphasis is on some underlying general concepts related to mathematical modelling and differential equations. These include topics in first and second-order differential equations, mathematical models and numerical methods, systems of differential equations, nonlinear systems and phenomena, eigen-values and boundary value problems. Upon completion, students should exhibit the ability to analyze resulting models by making use of both classical and numerical mathematical techniques and the essential knowledge and basic skills of mathematical modelling in describing, comprehending and predicting the behaviour of various physical, biological, mechanical processes and as well as other relevant dynamical systems.

SSCM 2833 – Linear Programming

Introduces the basic methodology of Operational Research (OR). Mainly deals with Linear Programming (LP) and related topics such as duality, sensitivity analysis, Transportation Problem, and Integer Linear Programming. Besides manual calculations, students learn how to use computer packages to solve and analyse problems.

SSCM 3123 – Multivariate Statistical Analysis

This is an introduction to the theoretical and practical techniques in multivariate analysis. We focus on analyses used when several quantitative measurements are made on each individual/object in one or more samples; the measurements as variables and to the individuals or objects as observations. The theoretical links between multivariate techniques and corresponding univariate techniques, where

http://science.utm.my

appropriate is highlighted. Also, selected multivariate techniques are introduced. The course also covers relevant multivariate methods in R statistical programming software.

SSCM 3133 – Statistical Quality Control

This course emphasis on working with data and the understanding of the different methods of designing and analyzing of the data. Methods of designing experiments are intended for undergraduates with good algebra background and have been introduced to basic statistics. Students will also undergo training in using data analysis packages, including, but not limited to, the SPSS and Microsoft Excel.

SSCM 3143 – Decision Theory

This course introduces the basic problems and techniques of decision making and comprises two major parts. The first part covers basic principles and approaches in decision making. The second part explores the methods and applications of information that are used in making an optimal decision. The course also covers differences between the classical frequencies approach and Bayesian approach in making decision, identify prior distributions and likelihood functions, and combine these two entities to obtain appropriate posterior distributions, which will then be combined with selected loss functions to obtain Bayesian estimators. Concepts of conjugate distributions on prior and posterior distributions, important definitions in decision theory, proving admissibility and inadmissibility of a decision, process of making an optimal decision, utility and reward, and sensitivity analysis related to an optimal decision are also part of the course.

SSCM-3153 – Inferential Statistics

This course introduces the theory of inferential statistics. It is concerned with the frequentist approach to inference covering point and interval estimation of parameters and hypothesis testing. Properties of estimators such as unbiasedness and sufficiency are applied to estimators of parameters of various distributions. Test of statistical hypotheses include certain best test, uniformly most powerful tests, likelihood ratio tests and chi-square tests.

SSCM 3423 – Numerical Methods II

This course discusses problem using numerical methods that involve systems of nonlinear equations and ordinary differential equations (initial and boundary value problems).

SSCM 3353 – C++ Programming

Concepts of visual programming using C++ for mathematical modelling and simulation. Understanding simulation, its design and implementation. Understanding primary classes in Microsoft Foundation Classes libraries and its graphical interfaces to the kernel. Creating the skeleton program for text and graphics applications. Producing buttons, edit boxes, static boxes, list view windows, menus and images. Applications in problems in curve drawing, numerical methods, graph theory, linear algebra and image processing.

SSCM 3503 - Complex Variables

This course is a continuation of the chapter on Complex Variables in Mathematical Methods III course (SSCM 2043). This course contains further topics on Complex Variables such as complex series including Taylor and Laurent series, the theory of residues with applications to the evaluation of complex and real integrals, and conformal mapping with applications in solving boundary value problems of science and engineering.

SSCM 3523 – Modern Algebra

This course consists of two parts. The first part includes introduction to groups, types of groups, isomorphism between groups, composition of groups to form a direct product, and types of subgroups including normal subgroups and factor groups. The second part is a selected topic of Sylow Theorems and their applications.

SSCM 3533 – Set Theory & Logic

Introduces axiomatic set theory and elementary logic. Since set theory and logic form the foundation of mathematics and are greatly intertwined, informal approach to sets are first reviewed to gather vocabulary for a study of logic. The logic parts include propositional algebra and predicate calculus, arguments and methods of proof. Set theory includes the basic axioms and definitions. Basic laws are derived rigorously using methods of logic. Further topics for introducing modern advanced mathematics include properties of numbers, sets and relations, equivalence relations, functions and cardinality.

SSCM 3543 – Number Theory

Number Theory is one of the oldest branches of mathematics, and yet it is very much an alive subject, with discoveries made every day. This course is intended to focus on the topics that relate specifically to the natural numbers. The goal of this course is to develop the student's ability with abstract concepts. Familiar properties of the counting numbers are studied, relationships are discovered, and deductive reasoning is used to verify consistency of these relationships. In the process, students

http://science.utm.my

gain insight into the nature of mathematical reasoning, especially common techniques of proof.

SSCM 3523 – Modern Algebra

This course consists of two parts. The first part includes introduction to groups, types of groups, isomorphism between groups, composition of groups to form a direct product, and types of subgroups including normal subgroups and factor groups. The second part is a selected topic of Sylow Theorems and their applications.

SSCM 3553 - Fields & Ring Theory

Introduces the concepts of rings and fields. Topics include ring, integral domain, homomorphism, quotient ring, field, field of quotients, vector space, extension field and algebraic extension. Emphasis is given to both the subject matter and the structure of proofs.

SSCU 3623 – Research Methodology and Data Retrieval

This course teaches the students on principles of research methodology and information retrieval. Topics include research philosophy and objectives, literature study and review, choosing and defining research problems and design, preparing and writing research proposals, technical report writing (the elements of technical writing), types of technical report writing, dissertation writing, public speaking (preparation and presentation) and information retrieval (search strategies). Presentation of assignment is also an important component in this course.

SSCM 3673 – Functional Analysis

Metric spaces: open set, closed set, neighbourhood, convergence, Cauchy sequences, completeness. Normed spaces: vector space, normed space, Banach space, finite dimensional normed space and subspaces, compactness and finite dimension, linear operators, bounded and continuous linear operators, linear functionals, linear operators and functionals on finite dimensional spaces. Banach Fixed Point Theorem: contraction mapping and Banach Fixed Point Theorem, error bound in iteration, applications to linear equations, application to differential equations, application to integral equations.

SSCM 3703 – Partial Differential Equation

This course discusses the method for solving second order partial differential equations (PDE). Discussion begins with derivation of the heat, Laplace and wave equations. I continues with classification and method of solving the equation by reducing to canonical form for variable coefficients equations and solving one-

http://science.utm.my

dimentioanal wave equation using the method of d'Alembert solution. The method of separation of variables will be employed to solve heat, Laplace and wave equations in various coordinates systems. The solution for the nonhomogeneous equations and the nonhomogeneous boundary conditions will also be considered.

SSCM 3753 – Fluid Mechanics

Comprises two parts. The first part is concerned with fluid kinematics while the second part deals with the derivation and the solution of the equations of motion for inviscid and viscous fluids. Students learn to apply mathematical techniques to solve fluid flow problems.

SSCM 3793 – Calculus of Variations

This course discusses mainly the extremals of functionals. Beginning with a review of similar concepts in functions of many variables, the concepts of functional and variational problems are introduced. Topics include analytical methods of solution (extremals of functionals) analytically and selected numerical methods. Upon completion, the students should be able to locate and identify extremizing functions as solutions to variational problems, based on the necessary and the sufficient conditions for an extremum, solve some basic applied problems, and know how to use the direct methods for finding the extremum.

SSCM 3803 - Mathematical Modelling II

This course introduces basic tools to derive and construct mathematical models using partial differential equations. Emphasis is given to the use of a conservation law. The methods of characteristics and separation of variables will be applied to solve the model equations.

SSCM 3843 – Optimization Methods

This course comprises of two parts; the first part covers topics on unconstrained optimisation such as one-dimensional and n-dimensional search methods, interpolation method and gradient methods. The second part covers topics on constrained optimisation such as the Kuhn Tucker method, modified Hooke and Jeeves search method, complex method, penalty function methods, and the Sequential Unconstrained Minimization Technique (SUMT).

SSCM 3883 – Multi-Objectives Decision Making

This course is an introduction to the theory and methods behind optimization under competing objectives involving single and also multiple decision makers. In this

http://science.utm.my

course, several approaches for finding the solution to the multi criteria decision problems will be explored, as well as the concepts of Pareto optimality and tradeoff curves to better understand the tradeoffs between objectives that occur in multiobjective decision making problems.

SSCM 4113 - Time Series

The course is designed to provide students to learn time series modelling in theory and practice with emphasis on practical aspects of time series analysis. Methods are hierarchically introduced-starting with terminology and exploratory graphics, progressing to descriptive statistics, and ending with basic modelling procedures. The time series modelling will start with reviewing the fundamental concepts in regression, exponential smoothing and general class of Box Jenkins models.

SSCM 4213 - Generalized Linear Model

This course consists of two parts that is the theory of generalized linear model and the application of generalized linear model in regression model, one-factor analysis of variance and two-factor analysis of variance. SPSS statistical package is used to apply generalized linear model to the above models.

SSCM 4163 – Stochastic Process

This course begins with the fundamental of stochastic processes that is the probability theory, and proceeds to discussing major stochastic processes, including Markov chains; discrete and continuous Markov chains, Poisson processes, and renewal theory. Applications to inventory problems, equipment replacement and queuing theory are also dealt with through examples.

SSCM 4243 - Sampling Techniques

This course introduces sampling methods used in sample surveys. The students are given a comprehensive account of sampling theory for use in sample surveys and include illustrations of how the theory is applied in practice. A prerequisite is familiarity with algebra, knowledge of probability for finite sample spaces and basic statistics. Topics include simple random sampling, sampling proportion and percentages, estimation of sample sizes, stratified random sampling, ratio estimators, systematic sampling, and cluster sampling.

SSCM 4623 – Non-Euclidean Geometry

This course is a survey of main concepts of Euclidean geometry with the emphasis on the axiomatic approach, constructions and logic of proof including historical aspects. A study of axioms of Euclidean geometry, inference rule, some basic theorems of Euclidean geometry and rigorous proofs will be offered. Non-

http://science.utm.my

Euclidean geometry is introduced. The similarities and differences between Euclidean and non-Euclidean geometries will be discussed.

SSCM 4633 – Fuzzy Set Theory

The course starts with brief discussion on an overview of crisp sets. It then follows with basic definition and important terminologies which include - cut, Extension Principle, and operation on Fuzzy sets. Fuzzy Arithmetic on Fuzzy Numbers including Operations on Intervals and Fuzzy Numbers, Lattice of Fuzzy Numbers are also thoroughly highlighted. Fuzzy Relations and Fuzzy Graphs are also discussed. Lastly we deal with Fuzzy Analysis and Uncertainty Modelling. In general, the course provides on the general concepts of fuzzy sets and its operations. The emphasis is also given for its applications in Uncertainty Modelling

SSCM 4653 – Applied Abstract Algebra

Introduces some basic applications of abstract algebra. Topics include applications of modern algebra in symbolic computations, error correcting codes and computations in Galois fields. Computer packages such as Maple will be used.

SSCM 4683 - Topology

This course is an introduction to the basic concepts of modern topology: metric spaces, topological spaces, connectedness, compactness, completeness, quotient spaces, manifolds, and classification of surfaces. Not only the course emphasizes the geometric aspects of topology, some applications to analysis will also be discussed. The material is very conceptual in nature, therefore it is all about proving abstract theorems, applying those theorems to examples, and finding counter-examples to false statements.

SSCM 4733 – Dynamical Systems

This course introduces the concepts of discrete and continuous dynamical systems, with the ultimate goal of introducing chaos and fractals. For continuous autonomous dynamical systems students learn about fixed points, orbits and invariant sets, and the stability of fixed points. In the discrete dynamical systems, they learn about orbits of one dimensional maps, bifurcation, period doubling which can lead to chaos and strange attractors. Applications include population growth, and electrical engineering. Computer software will be used to simulate and study the dynamical systems.

SSCM 4763 – Computational Fluid Dynamics

This is an introductory course on Computational Fluid Dynamics (CFD) where students are exposed to the techniques of obtaining the numerical solution to

http://science.utm.my

fluid flow problems using computer. Historical development, philosophy and the significance of CFD are discussed. The governing equations of fluid dynamics are derived from the fundamental physical principles. The derivation of finite difference approximations to derivatives is revised. Discretization is based on both explicit and implicit techniques. The application to classic fluid flow problems such as Couette flow and other unidirectional flows for viscous fluids, supersonic and subsonic flow for inviscid fluids will be discussed.

SSCM 4783 – Quantum Mechanics

This course introduces the basics of quantum mechanics. It covers the topic relating to the failure of classical mechanics and steps towards wave mechanics and Schrodinger equation. The concepts and formalism of quantum mechanics are applied to one dimensional problem, angular momentum, the hydrogen atom and electron spin and total angular momentum.

SSCM 4813 – Optimal Control

This course introduces the optimal control theory. The discussion includes definitions and classification of system control types. Topics include optimal control problems such as necessary and sufficient conditions using calculus of variation. Upon completion, students should exhibit understanding of the basic concepts and principles of mathematical control systems. The students should also be able to formulate state space equation, determine systems characteristics and solve basic optimal control problem using variational approach and dynamic programming.

SSCM 4823 - Scheduling

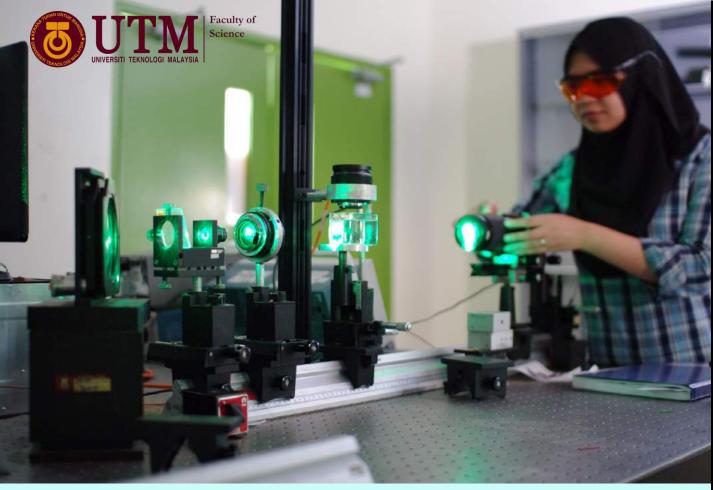
This course discusses various scheduling classes namely single machine, parallel machine, flow shop, job shop and open shop. Approaches for modelling and solving scheduling problems of the mentioned scheduling classes will be discussed. Various performance measures will be considered in obtaining a good schedule.

SSCM 4833 - Discrete-Event Simulation

This course introduces the application and theoretical background of basic discrete-event simulation concepts and models. Topics included the basic queuing systems, random number generation, model development, model verification and validation and result analysis. Students will be exposed to simulation model development using a simulation package. The course also helps the students to expand their critical thinking skills by experimenting with the simulated model for improvement.

SSCM 4863 – Financial Mathematics

The course begins with an introduction to basic financial mathematics covering the computation of simple interest and discount rates, deriving the compound interest, and applications of different rates of interest in determining the present and future values of different types of annuities for different time periods. The second part of the course concerns with classical quantitative finance i.e. derivatives, specifically option pricing. An introduction to the subject of finance is presented. This consists of a collection of definitions and specifications concerning the financial markets in general. Then, the subject of derivatives are examined: The Binomial option pricing and the Black-Scholes option pricing.


SSCU 4902 – Undergraduate Project 1

Students are required to execute a project (research) under an identified supervisor in an agreeable field of mathematics and document their findings. Students will learn to gather information on chosen topics through literature survey/review activities, construct research methodology, anticipate expected results, write current findings and references. Finally, students are required to submit a research proposal and a draft project/research report comprising of Title, Introduction, Statement of Problem, Research Objectives, Literature Survey/Review, Research Methodology, Expected Findings, Conclusion and References.

SSCU 4904 – Undergraduate Project 2

Students are required to execute a project (research) under an identified supervisor in an agreeable field of mathematics and document their findings. Students will learn to gather information on chosen topics through literature survey/review activities, construct research methodology, anticipate results, analyze findings, draw conclusion, write references, and to suggest further research. Finally, students are required to submit a report comprising of Title, Introduction, Statement of Problem, Research Objectives, Literature Survey/Review, Research Methodology, Analysis of Findings, Conclusion and References.

Synopses of Physics Courses

SSCM1023 – Mathematical Methods I

The course revises and extends Matriculation and STPM topics such as differentiation and integration and includes topics such as complex numbers and differential equations, which may be new to many students. Topics covered include parametric equations, functions, polar coordinates, vectors, and complex numbers. Students will learn how to define functions, and plot the graphs, using the Cartesian as well as polar coordinates; solve problems involving complex numbers and vectors. Additional topics include limits and continuity, differentiation techniques and its applications, integration techniques including improper integrals. Upon completion, the students would have acquired some quite powerful tools of analysis. This is also an introductory course on differential equations. Topic includes first order ordinary differential equations (ODEs). Students will learn how to classify and solve first order ODEs.

SSCM1033 – Mathematical Methods II

This course continues and extends the techniques introduced in Mathematical Methods I, with further differential equations and calculus of multivariable functions. Topics include linear second order ODEs with constant coefficients, functions of several variables, partial differentiation and multiple integrations.

http://science.utm.my

Students will learn how to classify and solve second order linear ODEs with constant coefficients using the method of undetermined coefficients and variation of parameters. They will also learn to determine the domain and range, techniques of graph sketching, and limit & continuity, find (partial) derivatives and evaluate (double and triple) integrals, pertaining to a function of two and three variables. The use of cylindrical and spherical coordinates is also highlighted. Applications include finding the volume, mass, centre of gravity, and moment of inertia of a solid.

SSCP1102 — Introduction to Physics Program

Physics is one of the most fundamental scientific disciplines with the main goal of understanding how the universe behaves. It covers a wide range of phenomena from the smallest sub-atomic particles to the largest galaxies, it is the scientific study of matter and energy and how they interact with each other. Physicist is a scientist who studies or practices physics. Examples of careers in physics are scientists and researchers in various fields of scince and technology. The philosophy of physics is essentially a part of the philosophy of science.

SSCP1143 - Mechanics

This course mainly discusses motion of a body or a system. Beginning with the basic and derived physical quantities and vector as mathematical tool, various types of motion such as linear, free-fall, projectile, circular, rotational and simple harmonic motions are described. Other topics such as equilibrium, elasticity, gravitation and fluids mechanics illustrate the application of a body in motion under the influence of a force.

SSCP1153 – Electricity and Magnetism

The course examines the force of electromagnetism, which encompasses both electricity and magnetism. It includes the exploration of some electromagnetic phenomena. It begins by examining the nature of electric charge and then a discussion of interaction of electric charges at rest. It then study about charges in motion particularly electric circuit. It continues into the study of magnetic interaction how moving charges and currents responds to magnetic field. The principle of electromagnetic induction and how resistors, inductors and capacitors behave in ac circuits is discussed. The understanding the electrical energy-conversion devices such as motors, generators and transformers are also discussed. Finally the study of the four fundamental equations that completely described both electricity and magnetism.

SSCP1163 – Sound, Wave and Optics

The course starts with introduction to the concept of sound, how it is produced, its characteristics, intensity and quality as well as the interference of sound which will be applied to modern sound devices. Finally, emphasize on optics on its dual properties. These will be inseminated in the phenomenon of interference and diffraction of light and its modern-day applications. In general, the course provides the basic concepts of sound and optics.

SSCP1223 Modern Physics

The course begins with a brief discussion on the nature of science in the quest of better understandings of the natural phenomena, highlighting the dilemmas and failures of classical physics in the face of some landmark experiments and discoveries, which gave the impetus to new ideas and paradigm shift into the modern physics. Finally, formalities of quantum mechanics is introduced by discussing the 1-D time independent Schrodinger equation (TISE), applied to an idealised infinite square potential well.

SSCM1523 – Linear Algebra

The course begins with the study of matrices and determinant. Starting with simple matrix operations, elementary row operation and inverses, and determinant of matrices. Solve the linear system using matrix inverse, Crammer's rule, Gauss and Gauss—Jordan elimination method. Next, the focus is on the vector spaces, subspace, linear independence, spanning sets, bases, coordinate vector and change of basis, orthogonal bases, and the Gram-Schmidt process. There follows a discussion of linear transformation and matrices, as well as the kernel and range. Finally, find the eigenvalues and eigenvectors and use them in diagonalization problem.

SSCM1703 – Differential Equations

An introductory first course in differential equations. Topics include first order ordinary differential equations (ODEs), linear second order ODEs with constant coefficients, the Laplace transform and its inverse, Fourier series, and elementary partial differential equations (PDEs). Students will learn how to classify and solve first order ODEs, solve second order linear ODEs with constant coefficients using the method of undetermined coefficients and variation of parameters, use the technique of Laplace transforms to solve ODEs with specified initial or boundary conditions, and use the technique of separation of variables to solve initialboundary value problems involving heat and wave equations and boundary value problems involving Laplace equation.

http://science.utm.my

SSCP1811 – Practical Physics I

Students perform experiments related to mechanics, electricity and magnetism and wave optics. These experiments are performed in pairs. At the end of the experiments, students submit technical reports which describe the experiment, the analysis and the findings. Upon completion, students should have the ability to handle the instrumentations and relate the experiments to the theories learned in Mechanics and Electricity and Magnetism, perform experimental analysis and write technical reports.

SSCP1821 – Practical Physics II

Students perform experiments related to thermodynamics, optics, modern physics and electronics. These experiments are performed in pairs. At the end of each experiment the student submit a technical report which describes the experiment, the analysis and the findings. Upon completion, the students should have the ability to handle the instrumentations and relate the experiments to the theories learned in Sound, Wave and Optics and Modern Physics, perform experimental analysis on the laboratory works and write technical reports.

SSCP2113 - Thermodynamics

The course starts with discussions on basic concepts of thermodynamics, thermodynamic properties of materials and thermodynamic processes. Energy transfer and energy analysis of systems and processes using the first and second laws of thermodynamics will be covered. The principles of gas power and refrigeration cycles are also briefly highlighted. In general, the course provides on the basic concepts of thermodynamics and it applications in conservation and utilisation of energy.

SSCP2213 - Nuclear Physics

The course introduces major concepts and theories of nuclear physics. The course begins with understanding the basic knowledge of the constituents of nucleus and the properties of nuclear forces. Radiation sources and the types of ionizing radiations are introduced. Nuclear decay process and the properties of ionizing radiations will be discussed. The interactions of nuclear radiations with mater and mechanism of nuclear reaction are covered. Basic concepts on radioactivity including radioactive decay law, radioactive decay series and radioactive equilibriums are covered. Some nuclear models such as liquid drop model, shell model and optical model of the nucleus will be introduced at the end of the course.

http://science.utm.my

SSCP2313 - Basic Electronics

The course starts with introduction to electronic components, circuit building and basic measurement of signal. Various circuit theory analysis such as superposition principle, mesh current analysis, Thevenin and Norton theorem are taught. DC and AC circuit analysis and the use of semiconductor devices such as diodes and transistors are discussed. Simple transistor amplifier are analysed using r-parameter model. JFET principle and bias circuit are also covered. The course provides good balance between theoretical and practical works on electronic circuits and its everyday applications.

SSCP2333 – Computer Programming

This course begins with a comprehensive introduction to computer, role of computer in physics, and operating system. Computer programming involving choices of computer languages and programming concept is also discussed. In the laboratory, the student experience working with a Linux desktop, client-server working environment, and all the necessary tools for terminal-server programming works. Throughout the course students are guided to build computer programs from simple to complex, all about solving various physics problem, based on the Java programming language. Students are exposed to methods for writing command-line based programs and tools utilising widgets for building application with graphical user interface.

SSCP2413 – Solid State Physics

Introduces basic concepts in solid state physics, with emphasis on crystal structures. The roles of phonons and electrons in a solid are discussed, using various models. Upon completion, students should be able to explain basic concepts used in solid state physics and techniques used in determining crystal structures. Students should also be able to discuss thermal properties of solids and the behaviour of electrons in solids, using various models.

SSCP2613 – Mathematical Physics

The main aim of the course are to intergrate physics and mathematics and to provide students with mathematical techniques for solving problems in physics. The course content consists of vector analysis, vector calculus, complex variable, matrices, ordinary and partial differential equations and Fourier series.

SSCP2821 – Practical Physics IV

Students perform experiments related to materials science, advanced electronics, lasers, optics and nuclear physics. These experiments will be conducted in groups of two or three students. At the end of each experiment the group prepares a technical report which contains the experimental procedure, detailed data analysis, discussion on the findings, and the conclusions. Upon completion, the student should have the ability to relate the experiments to the physical principles learned in relevant courses in materials science, advanced electronics, lasers, optics and nuclear physics, perform experimental analysis on the laboratory works and write technical reports.

SSCP3113 – Electromagnetism

The course introduces the vector and calculus approach in understanding various laws and principles of electromagnetism and time independent Maxwell's equations. The course describes the time varying electromagnetic fields and its physical principles in various applications.

SSCP3123 - Classical Mechanics

The course starts with brief discussion on Lagrangian and Hamiltonian dynamics. Euler and Lagrange equations, Hamiltonian principle, Euler theorem and kinetic energy, space time homogeneity, isotropy of specific velocity and momentum space, canonical equation, cyclic coordinates are discussed. Central field motion, orbit in a central field, planetary motion, Kepler's law, motion in an inverse square field, Rutherford scattering are highlighted. Dynamics of rigid body, kinetic energy, inertia tensor, angular momentum, base axis for inertia are studied. Oscillation, one dimensional motion, simple harmonic motion in one and two dimensions, damped and forced oscillations, electric circuit oscillation, coupled oscillation, two coupled oscillators and weak coupled oscillation are also discussed. The course ends with discussion on orthogonality of eigenvector, normal coordinate and molecular vibration.

SSCP3133 – Thermal and Statistical Physics

The course introduces the concepts of statistical mechanics and quantum statistics. The partition function, properties of large numbers of particles, the Fermi Dirac, Bose-Einstein and Maxwell-Boltzmann distribution laws are discussed. Upon completion, the student will have the ability to solve problems, relating to the properties of large numbers of particles and explain the connection between entropy and the number of accessible quantum states. The students should also be

able to relate between the free energy and the partition function and be able to calculate the properties of thermodynamic systems.

SSCP3143 – Relativity

The course presents main concepts of general relativity theory. The emphasis is on the physical understanding of the theory and the mathematical development is kept simple. The principle of equivalence, energy momentum stress tensor, Einstein field equation and Schwarzschild solutions are discussed. Tests of general ralativiy are described. Black holes and gravitational collapse are explained. The course ends with description of gravitational waves and their detection.

SSCP3153 – Elementary Particle

This course is designed to expose student to understand the most fundamental components of nature using the quark model. Some topics of interest would be the structure, definition, flavor and the combination of quarks to form other particles. Classifications of particles and their interactions into a number of easily identifiable categories, and a number of empirical rules will also be studied. Interactions between particles will be dealt with in terms of the four types of forces and the exchange of particles between them. The conservation theory of various interactions in terms of lepton number, parity, charge conjugate and time reversal are covered. At the end of the course, the students are expected to understand the unification theory of forces which incorporate the mechanics of the strong, weak and electromagnetic interactions into a single theory.

SSCP3163 – Energy and Environmental Physics

The course starts with a brief introduction on the processes and issues in environmental physics which include the global warming. The main topics are the physics of the built environment, energy for living, environmental health, revealing the planet, the biosphere, the global climate and climate change. The alternative sources of energy such as nuclear, wind and water are included. This course provides essential physics principles that govern environmental issues and the contribution to the interdisciplinary field of environmental science.

SSCP3323 – Advanced Electronics

The course begins with the hybrid h and phi small signal models for transistor. The small signal amplifiers and power amplifiers are analysed. The operational amplifier and its applications such as summing, differential amplifier, differentiator or integrator, and active filter are discussed. Sensors and amplification of signals are introduced. Basic concepts and principles of digital circuits, number codes and

http://science.utm.my

number system, Boolean algebra, logic gates, Karnaugh maps, IC specification and interfacing, encoding and decoding, flip-flops, counters, shift registers and digital arithmetic circuits are also discussed. Analog to digital and digital to analog conversion are covered. The course will be conducted by lectures and hands-on to provide students with basic concepts and practical experience in advanced analog and digital electronics.

SSCP3333 – Computational Physics

This course begins with a comparative discussion about analytical and numerical methods of studying physical phenomena. The design of program codes and equivalent pseudo codes are discussed. Numerical methods for investigation of elementary mechanics problems such as projectile, oscillatory, planetary motions, and the chaos of non-linear pendulum are introduced. Calculation of potential surface, electric and magnetic fields, and visualization of the respective calculated data are also covered. Wave phenomena are investigated numerically. Methods for investigation of random system and Monte Carlo simulation are also studied. The course ends with an introduction to molecular dynamic simulation method and how to animate visualization of simulated system.

SSCP3343 – Instrumentation and Data Acquisition

The course consists of two parts. The first part begins with a review of basic elements in measurement systems, sensing element, signal conditioning, signal processing and signal presentation. The classification of instruments, errors in measurement, static and dynamic characteristics of instrument and calibration are introduced. The measurements of physical quantities which include displacement, velocity and acceleration for translational and rotational motion, force and torque, low, medium and high pressure, temperature, flow, level, humidity and electrical quantities are discussed. For the second part, basic concepts and techniques for interfacing a microcontroller to external devices for data collection and process control and developing the related software required are discussed. Transferring and converting analogue variables into the digital form needed for processing are covered. The course provides the general concepts of measurement technique and system technology.

SSCP3433 – Quality Control

The course starts with a brief discussion on the general concept and definition, the importance, as well as the costs of quality in managing a business organization. Topics that are focused include the quality management principles, total quality management and ISO 9001 quality management requirements in manufacturing

http://science.utm.my

and servicing industries. The statistical techniques in quality control such as the process modelling, the acceptance sampling and the statistical process control (SPC) are discussed. Common SPC tools for troubleshooting and monitoring a process including the process capability analysis are emphasized. Basic concepts and definition of reliability is also highlighted. The course provides the general concepts of quality, quality management systems and the applications of various techniques in statistical quality control (SQC) both in production and service industries.

SSCM3503 - Complex Variables

This course introduces calculus of functions of a single complex variable. Topics covered include the algebra and geometry of complex numbers, complex differentiation, complex integration, complex series including Taylor and Laurent series, the theory of residues with applications to the evaluation of complex and real integrals, and conformal mapping with applications in solving boundary value problems of science and engineering.

SSCP3523 - Modern Optics

The course introduces the fundamentals of modern optics. Elementary optics, ray optics, optical instruments, source and detector, interference and diffraction, image processing, laser, polarization and electromagnetic effects, fibre optics and integrated optics are discussed. Upon completion, students should be able to apply the concepts to solve problems related to optical phenomena. Students should have the ability to apply and use standard optical components including laser and fibre optics. Students should be able to explain the functions of various components in optical systems for various applications.

SSCP3613 – Quantum Mechanics I

This course introduces phenomena that lead to the development of quantum mechanics. Black body radiation, photoelectric effect, particle-wave duality, wave packets, Schrödinger equations, observable expectation values, quantum operator and postulates of quantum mechanics are discussed. One dimensional time independent Schrödinger equations for infinite and finite square potential well, potential barrier, harmonic oscillator, hydrogen atom are discussed. Basic concepts in quantum mechanics are described and the application of quantum mechanical approach in solving contemporary quantum mechanical problems are explained. The differences of quantum mechanics and classical mechanics are emphasized.

http://science.utm.my

SSCP3811 – Practical Physics V

Students taking Practical Physics V will conduct two mini projects. They work in pairs, perform open-ended experiments and produce formal technical report of their work. The students will be supervised on one-to-one basis and are expected to develop ability to work independently. At the end of semester the student will present a short seminar which describes the project, its analysis and findings.

SSCP3821 – Practical Physics VI

Students taking Practical Physics VI will conduct two mini projects on physics based ICT. The sudents are required to develop ICT projects to solve problems related to physics. The students will be supervised by a supervisor, but they are encouraged to work independently. At the end of semester the student will present a short seminar which describes the project, its analysis and findings.

SSCU3915 – Industrial Training or Research Training

Industrial training or research training is viewed as an important training to expose students to real work life situation and to equip them with the necessary skills so that they would be job ready upon graduation. The students undertake a 12-week training at an organization or industry. During this training, the students will apply the knowledge learned in the university and boost their skills needed by a profession. The students will involve in hands-on use of instruments or quality control or statistical analysis and optimization techniques and other relevant skills. At the end of the training, the students should acquire basic skills in a professional manner and the experience gained during the training should enrich their generic skills.

SSCP4013 – Data Processing

This course introduces the ways of expressing data from experiment and how to analyze and draw meaningful conclusions. Emphasis is on the usage of open source software packages. Measurement uncertainty, accuracy, precision, systematic and random errors, sources of errors, standard deviation and level of confidence, error propagation, and rejection of measurement using Chauvenet's criterion are discussed. Binomial, Gaussian, Lorentzian, and Poisson distributions are described. Student will be introduced to linear and non linear curve fitting techniques which include linear regression, multiple regressions, peak resolution and fitting, correlation coefficient and Chi-squared measure of fitting quality. Various methods of data visualisation will be highlighted. These include 2D plot, surface plot, vector plot, and plot animation. Sudent will learn to do drawing of scientific diagram, digital image manipulation, import and export of image files.

http://science.utm.my

Synopses of Physics Courses

Scientific data analysis software packages that are used include Gnuplot, Octave, Scilab, and Maxima.

SSCP4123 – Non Destructive Testing and Evaluation

The course introduces major non-destructive testing (NDT) methods such as penetrant testing, magnetic particle testing, industrial radiography and Eddy current testing. Discussion of their physical principles and the techniques used follows. Specific application techniques based on the methods are discussed in detail, focussing on parameters affecting the outcome of each NDT method. The applications of eddy current techniques in material inspection such as thin plates and tubes are described. In radiography, the parameters affecting the exposure and the radiograph quality are discussed. The codes and standards and their application to specific NDT methods are described. Acceptance criteria applicable to specific requirements are also discussed. Safety aspects in NDT which include radiation and work safety are emphasized.

SSCP4133 – Industrial Electronics

The subject of industrial electronics is introduced. Discrete control, input and output devices, solid state devices in industrial electronics are described. Operational amplifiers and linear ICs. SCRs, triacs and other thyristors are discussed. Discrete automation sensors and devices, analog process control devices and sensors are highlited. Other topics covered are safety, DC motors and control circuits, AC motors and variable speed drives, special purpose motor and control devices programmable logic controllers embedded microcontrollers, open and closed loop process control. The course provides the basic knowledge of electronic devices, motors and machines related to industrial applications and the working principle of common instruments in industrial applications.

SSCP4143 - Electronic Circuit Simulation

This course introduces students to the principle and the various techniques in electronic circuit simulation such as DC, AC, transients, and worst-case scenario analysis. The circuit simulation utilizes SPICE and QUCs circuit simulator packages. Noise and performance analysis, harmonic distortion and sensitivity analysis are also discussed. The course focuses on discrete passive and active electronic components. The course provides alternative way to experience circuit building and analysis without having to build real circuit.

SSCP4163 – Astrophysics

Students will be introduced to the concepts and methods of astronomy and astrophysics. Topics covered by the course include astronomical objects and their classification, measurements and units, astrophysical nature of radiation, orbital dynamics, stellar structure, and many body dynamics.

SSCP4173 – Quantum Mechanics II

The courses starts with dicussion on quantum phenomena such as black body radiations, photoelectric effects, particle-wave duality and wave packets. Schrödinger equations, observable expectation values, quantum operator and postulates of quantum mechanics are discussed. One dimensional time independent Schrödinger equations for infinite and finite square potential well, potential barrier are examined and solved. Harmonic oscillator and hydrogen atom are described using operators. The students are expected to understand spin and Zeeman effect, perturbation theory and Stark effect. At the end of the course, the student should be able to solve some quantum mechanical problems. The students should also be able to work in a team and adhere to professional ethics.

SSCP4203 – Medical Radiation Protection

This course will give an overview on the various techniques and radiation doses involved in diagnostic radiology, radiotherapy and nuclear medicine. The current trends in use of diagnostic radiology, radiotherapy and nuclear medicine are survayed. The relevant laws, regulations and procedures that need to be observed and be implemented for radiological protection in medical practice will be elaborated. At the end of the course, students should have an overall grasp on the operation of the medical radiological protection.

SSCP4213 - Advanced Nuclear Physics

This is a continuation of the introductory Nuclear Physics course. Some topics are repetition of the introductory course but would be dealt in more detail. The course begins with the discussion of the nuclear properties, followed by the quantum mechanics theory applied specifically to the different potential wells of the nucleus. Different aspects of nuclear forces are dealt with great length. The classical shell models of the nucleus are discussed in detail together with some other realistic nuclear models. The alpha emission, beta decay and gamma radiation will also be dealt. In addition the types of nuclear reactions, types and processes are included. The course ends with the introduction of nuclear energy production and nuclear astrophysics.

SSCP4223 – Radiation Detection

The important detection techniques of ionizing radiations are introduced. The discussion begins with introducing the principles of radiation detection related to radiation units, radiation sources and radiation interactions. Nuclear radiation detector parameters such as detector model, detector efficiency, energy resolution, counting curve and counting statistics are discussed. The principles of operation and basic characteristics of various detection systems are outlined. Various nuclear detectors such as gas filled detector, scintillation detector and semiconductor detector are described. The course also emphasizes on the principle and operation of thermal and fast neutron detector. The principle of radiation dosimetry such as thermoluminescent dosimetry, chemical dosimetry, film dosimetry and calorimeter are also discussed at the end of the course.

SSCP4233 – Radiation Protection

The course is designed to ground students in the principles of radiation protection, that is, on justification, optimization and dose limits. It emphasizes on the theories, the techniques and the procedures for external dose control that is the use of distance, shielding and time. Internal dose control, including introduction to the physics of aerosol, use of unsealed sources, primary and secondary containments, radioactive laboratories and leak tests are discussed. The course also discusses organization and radiation protection programmes, emergency procedures, monitoring, radiological protection in radiation devices, transport regulations and radioactive waste management. Upon completion, students should have an overall grasp of the radiation protection principles and practice and most importantly the safety culture required.

SSCP4243 – Applied Radiation Physics

This course is a follow-up of Nuclear Physics and is designed to expose student to different types of radiation that exist in nature and environment, in particular the nuclear based radiation. Primary and secondary, directly and indirectly ionizing radiation are differentiated. Interactions of alphas, betas, photons and neutrons with matter are detailed. Radiation effects on materials are discussed. Applications of radiation in radio tracing, gauging, dating, and industrial imaging are studied. Accelerator as sources of radiation and their usefulness is also covered. Upon completion student are expected to have good grounding in applied radiation physics and ability to explain and discuss the application of radiations in various fields.

SSCP4253 – Medical Physics

This course introduces medical physics to physics majors as an elective in their program. Three main areas of medical physics namely medical imaging, nuclear medicine and radiotherapy are surveyed. The emphasis is in the physics that govern the field. At the end of the course students are expected to have an idea of the subject matter, its usefulness and applications in modern medicine.

SSCP4263 – Occupational Health and Safety

This course is designed in such a way that the student understands the issues of health that are prevailed among workers. The concept of the relationship between work and health will be discussed in detail. Some of the relevant topics covered during the course will be the subject of toxicology, thermal stress and mental health. Students are required to know about the principles of epidemiology, ergonomics and health services related to work. This course prepares student to understand the management of occupational health through health education, health promotion program, management of risks as well as from the legislative point of views such as the safety and health act.

SSCP4273 – Nuclear Energy

The course starts with brief discussion on neutron physics related to production, absorption and scattering of neutron, neutron cross sections and nuclear fission. The principle of neutron moderation and neutron multiplication leading to steady state fission reactor core design based on diffusion theory are outlined. The principle of fusion reaction and energy production from controlled thermonuclear fusion is also briefly highlighted. The course provides general concepts of neutron physics and it application in nuclear reactor for energy generation.

SSCP4283 – Environmental Radiation Protection

This course introduces students to the theoretical basis of environmental radiological protection and the basic principles and procedures of radiological protection in medical practice. Sources of environmental radiation and its dosage implications will be elaborated. Environmental models for radionuclide dispersal will be introduced. Handling of TENORM will be discussed. At the end of the course, students should have an overall grasp on the operation of the environmental radiological protection. Transport regulation and radioactive waste management.

SSCP4293 – Radiation Dosimetry

This course introduces radiation dosimetry as an area of radiation physics. Principle of dosimetry, radiation dose, radiation units, fluence, kerma and absorbed dose

http://science.utm.my

will be discussed. Dosimetry techniques and measurements, Bragg-Gray cavity theory and stopping power are discussed. The working principles of standard air chamber, thimble chamber and its calibration for dose measument are discussed. High energy photon and electron dosimetry are briefly outlined. Internal dosimetry of beta and gamma, and external neutron dosimetry are also studied. At the end of the course students are expected to have a working knowledge of radiation dosimetry.

SSCP4303 – Process Control

This course begins with discussion of process control of a system related to a production process, the criterion of control system for performance evaluation, the piping and instrumentation drawing (P&ID) to process control system, the process control system responses, sensor time response – first order and second order response and the various aspects of digital control system. The process control characteristics and some aspects of digital process control are discussed. The course will be conducted by lectures and simple simulated hands-on to provide students with practical experience in process control.

SSCP4323 - Electronics and Instrumentations

The course begins with discussion of operational amplifier and its applications such as summing and differential amplifier, differentiator or integrator, and active filters. Basic elements in measurement systems, sensing element, signal amplification, signal conditioning, signal processing and signal presentation are introduced. Basic concepts and principles of digital circuits, number codes and number system, Boolean algebra, logic gates, Karnaugh maps, IC specification and interfacing are discussed. Finally analog to digital and digital to analogue conversion are covered. In general, the course will be conducted by lectures and hands-on to provide students with basic concepts and practical experience in advanced analog and digital electronics.

SSCP4333 – Digital Signal Processing

The course starts with the discussion on the breadth and depth of digital signal processing. Then students will learn about the mathematics essential to signal processing such as statistics, probability, complex number, matrices and polynomial. Analog to digital converter and digital to analog converter.

SSCP4353 – Ultrasonic Techniques

The course describes the physical principles of ultrasonic waves and its interactions with media leading to the application in defect detections of engineering

http://science.utm.my

components and systems. The discussion will highlight the transduction mechanisms, ultrasonic systems, and various ultrasonic application techniques ranging from low to high intensity applications.

SSCP4363 – Electronic Testing and Maintenance

The course provides the basic knowledge of how to test suspected electronic components and how to properly maintain and handle them during usage. The course starts with hazard and safety procedure in dealing with electricity. Basic electronic testing instruments such as digital multi meter, oscilloscope, and spectrum analyser are described. Common electronic problems such as short and effect, open circuit. loadina ground loop, electrostatic discharae, electromagnetic interference, impedance mismatch are discussed. Testing basic discrete electronic components such as resistors, capacitors, inductors, diodes, transistors are covered. Common sensors such as thermocouple, Hall effect sensors, accelerometer and piezoelectric crystal are discussed. Upon completion, students will have basic skill to procure cost effective testing instruments, to use the equipments, to identify common electronic problems and to perform basic troubleshooting on basic components. The focus on safety will enable students to avoid electrical hazard.

SSCP4373 - Electronic Communications

This course introduces several process controls in industries. The process control characteristics and some aspects of digital process control are discussed. After completing this course, the student are expected to be able to describe the various industrial process controls. The student must also be able to explain the techniques in digital process control.

SSCP4383 – Signal Processing

The course covers the continuous (analog) and discrete (digital) signal processing. Students are introduced to continuous and discrete systems. The focus will be on linear time invariant system. Laplace and Z transforms are discussed, followed by Fourier and discrete Fourier transforms. Finally students are taught to design the analogue and digital filters. Upon completion, students will have adequate background to explore the world of signal processing.

SSCP4393 - Computer Interfacing

This course introduces basic concepts and techniques for interfacing a microcontroller to external devices for data collection and process control and developing the related software required. This includes transferring and converting

http://science.utm.my

Synopses of Physics Courses

analog variables into the digital form needed for processing. It is aimed at students interested in data acquisition and real-time control systems.

SSCP4403 – Microscopy and Material Analysis

This is an introductory course on microscopic techniques that deals with the basic working principles and construction of various microscopes, namely, light microscope, electron microscope, x-ray microscope, acoustic microscope, field ion microscope, and scanning probe microscope. For each type of microscope, particular reference is given to the resolving power, sample preparation, and analysis of the micrograph. In general, this course provides the students with necessary knowledge on the choice of microscope for the study of materials.

SSCP4413 – Semiconductor Physics

The aim of this course is to provide basic knowledge and theory of semiconductor physics and introduction to semiconductor devices. It will start with the growth and doping of semi conducting materials. The energy band and carrier concentration in thermal equilibrium and carrier transport phenomena in semiconductor are studied. Discussion on the p-n junction and some selected diodes are made toward the end of the course.

SSCP4423 – Condensed Matter Physics

The course starts with the discussion on single electron model and Schrodinger equation, followed by the theory of a nearly free and tightly bound electron. The electron-electron interaction and the band structure are discussed. The dynamic theory of the electron transport is studied in detail. The knowledge is important for example in industry that deals with low temperature physics.

SSCP4433 – Magnetism

The course describes the fundamentals of magnetism, its discovery and its impact on civilisation and technology. The phenomenological and theoretical approach will be employed, begining with a brief review on elementary magnetostatics and origins of magnetism, magnetic dipole, its response to an applied magnetic field and various interactions giving rise to different types of magnetic ordering in solids. It covers material's classifications: Diamagnetism, para-, ferro-, antiferro- and ferrimagnetism, as well as relevant rules, laws, theoretical approaches: Hund's Rule, Curie's and Curie-Wiess law, Langavin and Stoner theories. Crystalline–electric field effects are treated at a level that is sufficient to provide the basic knowledge in understanding the properties of materials. Other topics include the techniques for magnetic field generation and measurements, magnetic materials and their

http://science.utm.my

various applications, such as in electrical and media devices. In general, the students should be able to understand phenomenon related to magnetism, distinguish between the class of magnetic materials and types of magnetism, their wide applications and technological advancements, and be able to perform basic calculations.

SSCP4443 – Magnetic Materials

The course covers fundamentals of magnetism, basic theories and applications of magnetic materials. It begins with a brief review on elementary magnetostatics and origins of magnetism. The basic theories describing ferro-, ferri-, para-, dia- and antiferromagnets will be outlined briefly. Properties such as anisotropy and magneto-optical effect are discussed in order to understand their applications. Finally, the students will be introduced to some novel magnetic phenomena and exotic magnetic materials with some modern device applications. The students will also undertake a written assignment to cover other related topics, such as in the field of space science, medicine, biology and agriculture.

SSCP4453 – Low Temperature Physics and Superconductivity

This course introduces basic knowledge of low temperature physics and many important properties of materials at low temperature regimes. Important aspects of the cryogenic world – the cryogens and cryophysics are introduced. Liquid helium and its important properties which are important in the cryophysics will be discussed in detail, followed by the techniques and methods of achieving low temperatures and measurement at low temperatures. Low temperature phenomena such as superconductivity and related theory are discussed. Basic properties of superconductivity will be discussed. Theories of superconductivity such as Gorter and Casimir theory, London theory, Ginzburg-Landau theory and BCS theory are introduced. The course ends with the discussion on high temperature superconductors.

SSCP4463 – Corrosion Science

This is an introductory course on corrosion science with emphasis on the electrochemistry and kinetics of corrosion. The areas covered are measurements and testing of corrosion, standard practices in corrosion prevention and inhibition, choices of materials and their environments, atmospheric corrosion, and metals oxidation. This course will provide students with general knowledge on corrosion mechanism and methods and ways of combating corrosion.

SSCP4473 – Spectroscopy and Material Analysis

http://science.utm.my ...where great minds are nurtured

The course starts with a basic concept of spectroscopy followed by the properties of electromagnetic waves. The interaction of electromagnetic radiation with matter is discussed. Basic instrumentation that is used in the spectroscopy is described. The spectrum and its intensity are discussed. Molecular vibration, microwave spectroscopy, infrared spectroscopy, Raman spectroscopy, NMR spectroscopy are highlited. The course provides some knowledge on the spectroscopy techniques for material analysis that are used mainly in material related industry.

SSCP4483 – Semiconductor Devices

This course is designed to focus on the semiconductor devices and material requirement for devising particular devices. It started with discussion on the growth, doping process, contact materials and properties of semiconductor. The study and discussion on the p-n junction and Schottky contact/diode will a main objective of the subject. The basic principle, operation and material requirement of devices and introduction to micro and nano-materials and electronics will be given toward the end of the lectures.

SSCP4493 – Metallurgy

Solidification and crystalization, phase equilibrium diagrams, composition determination, steel hardening process, heat treatment of steel, welding process and types of welding, defects in welding, casting process and types of casting, forging process and defects in forging, types of oxidation formation, corrosion, corrosion protection, metallography testing, mechanical testing

SSCP4513 - Laser Physics

This course relates the principle of laser generation and its fundamental characteristics. It starts by discussing the rejuvenation of optics due to the invention of laser. This is followed by introducing the nature of light interaction with atom, Einstein relation, absorption and gain coefficient, laser mode, and laser beam modulation. Last but not least the laser light properties are highlighted and comparison is made with respect to conventional light.

SSCP4523 – Laser Technology

This course introduces the laser source and it application in industry. It covers basic laser, light interaction with atom, laser structure and generation, laser type. The laser sources have been applied in many areas including in industry and holography. In engineering the laser is used for material processing. Holography is

http://science.utm.my ...where great minds are nurtured

Synopses of Physics Courses

used for quality control. Laser is used to drive fusion interaction. In military the lasers are used as a guidance and weapon.

SSCP4533 – Fibre Optic Technology

The course introduces the historical development and the importance of fibre optics in different applications. The parameters involved in the usage of optical fibres and the components of a fibre optic system will be described. Techniques of preparing an optical fibre will be discussed, including instruments used for preparation and measurement. The application of fiber optics in communication and sensing will be described and discussed. Upon completion, the students are expected to be able to describe the structure, material content and various characteristics of an optical fibre. The student should also be able to analyze the functional role of the various components of an optical fibre system for use in communication and sensing, and be able to describe the preparation and measurement techniques required.

SSCP4543 - Optoelectronics

This course is designed to expose the students to the present trends in optoelectronics and will be introduced to the basic concepts and working principles in optoelectronic components and devices. The fundamental and functional of components in optoelectronic system are discussed, including the analysis of parameters essential in the design and applications of optoelectronic system. Students are expected to have the ability to explain the main concepts of optoelectronics as it emerges in wide range of physics especially light and optics. Students are expected to comprehend the working of various optoelectronic concept, components and devices, describe and discuss the functions of the components and analyze the parameters involved in the design and application of optoelectronic system.

SSCP4553 - Applied optics

This course introduces the variety of applications related to optics. Optical design techniques, photometry, radiometry, application of laser optics, fibre optics components and optical systems are described and discussed. Upon completion, students should have the ability to make simple optical design using standard optical components including laser and fibre optics components. The students should also be able to explain the functions of various components in optical systems in various applications.

http://science.utm.my

SSCP4563 – Photonics

The course introduces the various fields of study in photonics such as fourier optics, crystal optics, integrated optics, nanophotonics and biophotonics. The principles and parameters involved in the various fields of study will be described. The applications that have emerged from the studies such as in communication, sensing and imaging will be described and discussed. Upon completion, the student must have the ability to describe the models used in the various fields of study in photonics. The student should also be able to analyze the functional role of the various components and devices in different photonic systems, such as their roles in communication, sensing and imaging systems.

SSCP4573 - Laser In Medicine

This course introduces laser devices applied in medicine. It covers laser biophysics, nonlinear effect and photodisruption, mechanism of damage induced by Nd:YAG laser, laser tissue interactions, laser in eye surgery, laser in dentistry, laser acupuncture, low level laser theraphy, digital holography. Lasers have been utilized in wide area of medical field.

SSCP4583 – Photometry

The course introduces basic concepts in photometry and various the photometric parameters involved. Photometric measurement procedures and instrumentation will be described. Fundamentals of colorimetry will also be discussed, including the CIE system used. Upon completion, the students are expected to be able to describe the various photometric parameters, measurement procedures and instrumentation related to photometry and colorimetry. The student should also be able to use photometry parameters in analyzing simple optical systems.

SSCP4593 – Solid State Laser Engineering

This course describes the design and construction of solid state laser. This includes the design of optical resonator, which cover the transverse modes, longitudinal mode, intensity and frequency control, hardware design, unstable resonator and wavelength selection. To pump the laser, various pump sources are discussed. The pump radiation transfer methods are also described. To stabilize the laser, the effect of thermo-optic is considered. Finally the laser beam is modulated by Qswitch and mode locked.

SSCP4603 – Vacuum and Thin Film

http://science.utm.my ...where great minds are nurtured

Conductance and throughput. Vacuum gauges and pumps. Nucleation, physical vapour deposition, chemical vapour deposition, characterization measurements, properties – structural, optical, electrical and magnetic, novel properties – quantum effect, giant magnetoresistance, thin film solar cells, layered magnetic nanostructures - GMR sensors, single-electron devices.

SSCP4623 – Material Science

This course introduces basic and important properties of materials. This includes material structures and defects that determine the vital properties such as its mechanical, electrical or optical properties. Students are also taught the important parameters of materials characteristics and methods of testing these parameters. In general this course provides the relationship between the required properties and materials processing to suit certain product application

SSCP4633 – Ceramic and Amorphous Materials

The course starts with a brief introduction on the amorphous and ceramic materials, the formation theory and thermodynamic approach. Their preparation techniques will be given consequently. The microscopic and the macroscopic structure of amorphous and ceramic materials which include the bond and the imperfections are discussed. The physical, mechanical, optical and the electrical properties will be emphasized. The chemical durability of amorphous will be attentively highlighted. In general, the course provides some knowledge on the amorphous and ceramic materials and their characterization that are useful in the glass and ceramic industry.

SSCP4643 – Polymeric Materials

The course starts with basic concept of polymer and degree of polymerization. The classification of polymer will then followed. Preparation techniques and crosslinkages are studied. The crystallinity, amorphousity and the morphology of the polymer are highlighted. The mechanical, physical and thermal properties will also be presented. In general, the course provides some knowledge on the polymeric material and their characterization that are useful in polymer industry.

SSCP4713 – Introduction to Nonlinear Optics

This course describes the interaction of laser with nonlinear materials. It starts with interaction of photon and atom, followed by discussion of laser operation, laser oscillation, electro-optic, and introduction to non linear optic. The nonlinear process includes second harmonic generation, parametric and phase

http://science.utm.my ...where great minds are nurtured

Synopses of Physics Courses

conjugation. Finally, the solitary wave in dispersive media for generating ultra-short pulse is discussed.

SSCP4913 – Radiobiology

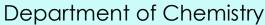
This course introduces students to the theoretical basis and the model of the biological effects of radiation. Physical, chemical and cellular perspectives will be elaborated. It will examine the macroscopic effects of radiation, be it deterministic, somatic, stochastic or genetic. The course will also discuss the effects of ingested radionuclide and the various models involved in it, radiation ecology and the effects of non-ionizing radiations. At the end of the course, students should be able to make informed judgments on the short and the long-term health physics and radiological protection implications of a radiation exposure.

SSCU4902 – Undergraduate Project I

A student is required to plan a project (research) under a supervisor in an agreeable field of physics and document the findings. Students will learn to gather information of the related topic through literature survey/review activities, construct research methodology, anticipate the expected results (if no data were obtained), and write conclusion and references. Finally, students are required to submit a research proposal comprising of the title, introduction, literature survey/review, research methodology, expected results and discussion, Gantt chart and references.

SSCU4904 – Undergraduate Project II

A student is required to execute a project (research) under a supervisor in an agreeable field of physics and document the findings. Students will learn to gather information of the related topic through literature survey/review activities, construct research methodology, perform the related experiments, collect the data, discuss the results, and make conclusions. Finally, it is compulsory for the students to submit a thesis, proceeding and present their work in an undergraduate symposium.



Faculty of Science Academic Staff

191

Department of Chemistry						
NAME	QUALIFICATION	SPECIALIZATION	ROOM NO.	TEL. NO	E-MAIL	POST
HEAD OF DEPARTM	ENT					
Assoc. Prof. Dr. Zaiton Abdul Majid	B.Sc, M.Sc (Western Illinois University), Ph.D (Universiti Malaya)	Physical Chemistry, Sorption technology, Cement Chemistry, Graphene-based material in water treatment.	C18-107	34008	zaitonmajid@utm.my zaiton@kimia.fs.utm.my	Head Department of Chemistry, Faculty of Science
PROFESSOR						
Dr. Wan Azlina Ahmad	BSc (Hons) University of Malaya, PhD King's College, University of London	Industrial and Environmental Biotechnology	C19 -312	34546	azlina@kimia.fs.utm.my wazlina@utm.my	Head, BacTec Research Group
Dr. Sugeng Triwahyono	PhD (Graduate School of Engineering, Hokkaido University, Japan)	Solid Acid-Base Catalysis	C18-308	34146	sugeng@utm.my	

	M.Eng. (Chemical & Environmental Engineering, Kitami Institute of Technology, Japan) B.Eng. (Industrial Chemistry, Kitami Institute of Technology, Japan)					
Dr. Madzlan Bin Aziz	BSc (Newcastle Polytechnic, UK), MSc (UMIST), PhD (De Montfort University)	Electrochemical Materials Nanomaterials	C10-310	34242	madzlan@utm.my madzlan@kimia.fs.utm. my madzlan.aziz@gmail.co m	Dean Frontier Materials Research Alliance
Dr. Mohd Marsin Bin Sanagi	BA (Macalester, USA), MS (Iowa, USA), PhD (Loughborough, UK)	Analytical Chemistry Separation methods Extraction techniques Mesoporous materials	C19-414	34517	mmarsin@utm.my marsin@kimia.fs.utm.my	

Dr. Wan Azelee Bin Wan Abu Bakar	BSc (UKM), MSc (University of Heriot-Watt, Edinburgh, Scotland) Ph.D (University of Nottingham, Nottingham, United Kingdom)	Heterogeneous Catalysis, Oil & Gas Solution-Chemical Provider	C10-216	34022	wazelee@kimia.fs.utm. my wanazelee@yahoo.com	Deputy Dean (Research & Innovation)
Dr. Mustaffa bin Shamsuddin	B.Sc (Hons) Chemistry (E Anglia), M.Sc (E Anglia), PhD (Leeds)	Metaloorganic Chemistry, Nanoparticle Synthesis, Catalysis	C19-310	34515	mustaffa@kimia.fs.utm. my, mustaffas@utm.my	
Dr. Hadi Nur	BSc. (Institut Teknologi Bandung), M. Eng (cum Iaude) (Institut Teknologi Bandung), PhD (UTM)	Heterogeneous catalyst and catalysis, nanostructured materials, microporous and mesoporous materials, photocatalysis, Polymeric materials	IIS-206-09	36060	hadi@kimia.fs.utm.my	Director, Centre for Sustainable Nanomate- rials (CsNano)
ASSOCIATE PROFES	SOR		1			
Dr. Lee Siew Ling	Ph.D (UPM) B.Sc. (Hons)(UPM)	Catalysis, Nanomaterials	IIS-206- 08, C17 309-01	36039	sllee@ibnusina.utm.my, Isling@utm.my	Academic Manager (Research and Innovation)

Academic Staff

193

Dr. Azli Bin Sulaiman	Dip. Sc. Ed., B. Sc. Ed.(Hons) (UTM), M. Sc., P. hD. (Loughborough), AMIC	Analytical Chemistry Analytical Spectroscopy Trace Metals Analysis Speciation Study	C19 416	34542	azlisulaiman@utm.my	
Dr Umi Kalthom Bt Ahmad	BSc Chemistry (Swansea, UK), MSc Forensic Science (Strathclyde, UK), PhD Chemistry (UTM)	Forensic Chemistry, Environmental Chemistry, Chromatographic Separation	C10 419	34522	umikalthom@utm.my	
Dr. Farediah Ahmad	B.Sc (Hons) UKM, Ph. D (Kent)	Organic Chemistry, Natural Product Chemistry, Organic Photo Chemistry	C18-404	34137	farediah@kimia.fs.utm. my	
Dr. Jafariah Jaafar	B.A (CSU, Chico), M.Sc (UKY, UBC), Ph.D (KIT)	Analytical Chemistry, Chromatography	C18-108	34142	jafariah@kimia.fs.utm. my	
Dr. Razali Ismail	B.Sc, M.Sc (Ohio), Ph.D (UTM)	Analytical Chemistry, Environmental	C18-106	34124	zali@kimia.fs.utm.my	
Dr. Rusmidah Ali	B.Sc (Hons), Dip.Ed (UKM), M.Phil (Southampton), Ph.D (Durham)	Inorganic Chemistry, Coordination Chemistry, Catalysis (Photo & Methanon)	C10-414	3411	rusmidah@kimia.fs.utm. my	

Academic Staff

194

SENIOR LECTURERS	1					
Dr. See Hong Heng	BSc (UTM) MSc (UTM) PhD (UTM)	Analytical Chemistry; Separation sciences; Extraction Technologies; Lab- on-a-chip	C10 - 324 206 - 02 (N31- CSNano)	34498 36270 (CS Nano)	hhsee@utm.my	Research Fellow CsNano
Dr. Siti Aminah binti Setu (Sabtu)	BSc in Industrial Chemistry (UTM) PhD in Physical and Theoretical Chemistry (University of Oxford)	Colloid-polymer chemistry Microfluidics	C19-318	34502	sitiaminahsetu@kimia.fs. utm.my sitiaminahsetu@utm.my	
Dr. Che Rozid Bin Mamat	BSc (UTM), PhD (Southampton)	Liquid Crystals Electron Spin Resonance	C18-110	34122	cherozid@utm.my	
Hashim bin Baharin	Bsc (UTM) Msc (UTM)	Analytical Chemistry	C19 418		hashim@kimia.fs.utm. my	
Shajarahtunnur binti Jamil	B.Sc (UKM), M.Sc (UTM), Ph.D (UTM)	Organic Chemistry/Natural Products Chemistry	C18-411	34156	shaja@kimia.fs.utm.my shajarah@utm.my	
Joazaizulfazli Jamalis	BSc (UTM) PhD (University of Bristol)	Organic Chemistry, Synthesis of Bioactive Heterocyclic Compounds	320 C10	34313	joazaizul@kimia.fs.utm. my joazaizulfazli@utm.my	
Dr. Khairil Juhanni Binti Abd Karim	BEng (Gifu University), MEng (Gifu University),	Polymer Chemistry, Organic Chemistry, Analytical Chemistry	C18-105	34151	juhanni@kimia.fs.utm. my, kjuhanni@utm.my	

	PhD (UNSW, Australia)					
Dr. Hasmerya Maarof	B.Sc (Hons)(UTM), MSc (Cardiff), PhD (Cardiff)	Computational Chemistry, Solid State Chemistry	C19-214	34518	hasmerya@kimia.fs. utm.my	
Dr. Mohd Bakri Bakar	B.Sc (Hons)(UTM) , M.Sc (UTM), Ph.D (TCDublin)	Organic Synthetic Chemistry, Porphyrin Chemistry, Photodynamic Cancer Therapy, Organic Molecular Photonic	C18-208	34131	bakri@kimia.fs.utm.my	
Dr. Naji Arafat Mahat	B. Biomedical Sc.(Hon.) (UKM), PhD (USMI)	Forensic Biology, Entomology,	C18 314	34138	naji@kimia.fs.utm.my	
Dr. Norazah Basar	B.Sc (Hons), M.Sc (UTM), Ph.D (UTM),	Organic Chemistry, Natural Products Chemistry	C18-313	34345	norazah@kimia.fs.utm. my	
Dr. Nursyafreena Atan	B.Sc.(Hon.), PhD(UTM)	Physical Chemistry, Advanced Material, Catalysis.	C18 316	34125	nursyafreena@kimia.fs. utm.my	
Dr. Roswanira Abd Wahab	Dip. Microbiology (ITM), B.Sc (Hons), M.Sc (UTM), PhD (UPM)	Organic Chemistry, Chemical Biology	C18-311	34148	roswanira@kimia.fs.utm .my	

Dr. Aemi Syazwani Abdul Keyon	B.Sc (Hons), M.Sc (UTM)	Analytical Chemistry	C18-310	34141	aemi@kimia.fs.utm.my	
Dr. Sheela Chandren	BSc (Hons), MSc (UTM), PhD (Hokkaido University)	Inorganic Chemistry Photocatalysis Heterogeneous Catalysis Porous Materials	C18-312	34312	sheela@kimia.fs.utm.my sheela@utm.my	
Dr. Fazira Ilyana Abdul Razak	Dip., BSc (Hons) (UiTM), MSc (Wollonggong), PhD (Australian National University)	Organometallic Synthesis, Computational Studies, Nonlinear Optic Material	C18-410	34135	fazirailyana@utm.my	
Dr. Susilawati Toemen	BSc, MSc, PhD (UTM)	Inorganic Chemistry Catalysis Photocatalysis	C18-415	34127	susilawatitoemen@utm. my	
LECTURERS						
Anthony Nyangson Anak Steven@Mohd. Daniel	BSc. (Hons) Applied Chemistry (UITM) M.Eng Environmental Engineering (UTM)	Analytical Chemistry, OSHE, Food Chemistry.	C10-334	34304	anthony@utm.my	

Academic Staff

Department of Mathematical Sciences

NAME	QUALIFICATION	SPECIALIZATION	ROOM NO.	TEL. NO	E-MAIL	POST
HEAD OF DEPARTM	ENT					
Assoc. Prof. Dr. Rohanin Ahmad	B.Sc, M.Sc (Indiana State Univ), Ph.D (UTM)	Operational Research, Optimal Control.	C10-313 C17 Level 3	34005/ 34463	kjsm.fs@utm.my rohanin@utm.my	Head, Department of Mathemati- cal Sciences
PROFESSOR						_
Dr. Mohd Nor Mohamad	B.Sc (Hons) (UKM), M.Sc, Ph.D (Newcastle), APMM, C.Math MIMA	Non-linear Waves and Soliton, Fluid Mechanics, Mathematical Biology, Differential Equations, Mathematical Modelling	C22-442 C17 Level 2	34273/ 34002	mnorm@utm.my	Deputy Dean (Academic)
Dr. Nor Haniza Sarmin	BSc, MA, PhD (Binghamton University)	Group Theory and Its Applications Formal Language Theory and Its Applications	C22-414 Level 1, S19, UTM Internati onal	34266/ 38004	nhs@utm.my	Director (Global Education) UTM International
Dr. Norsarahaida Saidina Amin	B.Sc (Hons) (Adelaide), M.Sc (Northwestern), Ph.D (East Anglia)	Fluid Mechanics and Heat Transfer, Bio-fluid Mechanics	C22-430 C17 Level 2	34267/ 34000	dekan.fs@utm.my norsarahaida@utm. my	Dean

Dr. Shaharuddin Salleh	B.A (CSU, Chico), M.Sc (Portland State), Ph.D (UTM)	Computational Mathematics	C22-437	34269	ss@utm.my	
Dr. Tahir Ahmad	B.A, M.Sc (California State), Ph.D (Sheffield Hallam)	Algebraic Topology, Fuzzy Logic	C10-410	34354/ 36072	tahir@ibnusina.utm.my	Chairman, Mathematic s Programme , IIS
Dr. Zuhaimy Hj. Ismail	B.Sc (Hons) (Nottingham), P*CE (UKM), M.Sc, Ph.D (Loughborough)	Operational Research, Forecasting, Statistics and Risk Management, Vehicle Routing Problem, Heuristic Method, Alternative Ismaic Financing, Reactive Tabu Search for Solving VRP, Ant Colony Optimization	C22-434	34224	zuhaimyi@yahoo. com zuhaimy@utm.my	
Dr. Mohd Ismail Abd Aziz	B.Sc (NSW), M.Sc (Loughborough, Ph.D (City)	Operational Research, Business Mathematics, Optimal Control Theory and Applications, Hierachical Optimal Control,	C22- 416/ Chancel lery Building	34239/ 30500	mismail@utm.my	UTM Deputy Vice Chancellor (Student Affairs & Alumni)

Academic Staff

		Application of Game Theory in Resource Allocation, Stability Methods of Nonlinear Control Systems, Financial				
Dr. Zainal Abdul Aziz	B.Sc (Hons) (Manchester), M.Sc, Ph.D (UKM), MMMSS, MIPM, MIAENG	Non-linear Waves, Functional Integrals, Mathematical Physics, Engineering and Industrial	C22-422	34230/ 32707	zainalaz@utm.my zainalaziz@yahoo. com	Director UTM-CIAM
Dr. Muhammad Hisyam Lee	B.Sc (Hons), M.Sc (UKM), Ph.D (UTM)	Experimental Design and Analysis, Exploratory Data Analysis, Multivariate Analysis, Statistical Computing, Statistical Modeling, Industrial Statistics, Mobile Network Technologies, Wireless Communication and Technologies, Mobile Computing,	C22-416	34236/ 30264	mhl@utm.my hisyamlee@gmail. com hisyamlee@yahoo. com	IT Manager Office of the Deputy Vice- Chancellor (Academic and Internationa I)

Academic Staff

		Terrestrial Gamma Radiation Analysis				
ASSOCIATE PROFES	SOR	· · · · · · · · · · · · · · · · · · ·	•	•	·	
Dr. Normah Maan	BSc (Hons) (Sheffield University) MSc (UTM), Ph.D (UTM)	Applied Mathematics, Dynamical System Modelling, Fuzzy Set Theory, Tumor Growth Modelling	C10-427	34318	normahmaan@utm.my normahmaan@gmail. com	
Dr. Robiah Bt Adnan	BSc (CALIFORNIA State University, Chico, California, Usa) Msc (University Of Kentucky, Lexington, Kentucky, Usa) Phd (Utm)	Statistics - Linear Models, Multivariate Analysis, Design Of Experiments	C10-423	34343	robiaha@utm.my	
Dr. Sharidan Bin Shafie	BSc,MSc,PhD (UTM)	Applied Mathematics: Mathematical Model Of Boundary Layer Flow And Heat And Mass Transfer	C10 412	34465	sharidan@utm.my	
Dr. Ali Hassan Mohamed Murid	B.Sc, M.Sc (Iowa State University, USA), Dip.Ed, Ph.D (UTM)	Applied and Computational Complex Analysis	C22-412	34245	alihassan@utm.my	
Pn. Hazimah Abdul Hamid	B.Sc, M.Sc (WMU)	Mathematics Education	C10-411	34466	hazimah@utm.my	

				[
Dr. Ismail Mohamad	B.Sc, M.Sc (Indiana), Ph.D (Lancaster)	Applied Statistics, Missing Data Problem	C13-324	34296	ismailm@utm.my
Dr. Fadhilah Yusof	B.Sc, M.Sc, M.BA (Indiana St), PhD (UTM)	Stochastic Modelling, Statistical Hydrology	C10-325	34462	fadhilahy@utm.my
Dr. Khairil Anuar Arshad	B.Sc (Northwest), M.Sc (Kentucky), Dip.Ed (UTM), Ph.D (Bradford)	Neural Network, Fuzzy Modelling, Matematical Modelling	C15-308	34385	khairilanuar@utm.my
Dr. Maizah Hura Ahmad	B.Sc (Iowa), M.Sc (Kansas), Ph.D (UTM)	Applied Statistics and Operational Research	C10-331	34327	maizah@utm.my
Dr. Munira Ismail	B.Sc, M.Sc (Indiana State), Ph.D(UTM)	Applied and Computational Complex Analysis, Boundary Integral Equation, Numerical ODE	C22-441	34272	muniraismail@utm.my
Dr. Nor'aini Aris	B.Sc (Iowa), M.Sc (Kansas), Ph.D (UTM)	Algebra, Algebraic Computations	C22-411	34227	noraini@utm.my
Dr. Ong Chee Tiong	Dip.Ed, B.Sc.Ed (Hons)(UTM), M.Sc (UTM), Ph.D (U.Alberta, Canada & UTM)	Non-linear Waves and Soliton, Mathematics Education Engineering and	C21-426	34082	octiong@utm.my ongutm@gmail.com

		Industrial Mathematics				
Dr. Yudariah Mohammad Yusof	B.Sc.Ed (Hons) (Malaya), M.Sc (Leeds), Ph.D (Warwick)	Advanced Mathematical Thinking & Problem Solving	C10-312	34315	yudariah@utm.my	
Dr. Norma Alias	B.Sc, M.Sc, Ph.D (UKM)	Industrial Computer, Numerical Computation, Scientific Computing & High Performance Computing on Distributed Parallel Computer Systems	C14– 336 IIS	34416/ 36271	normaalias@utm.my norma@ibnusina.utm. my	
Dr. K.K. Viswanathan	B.Sc (Madras), M.Sc , PhD (Anna, India)	Continuum Mechanics and Numerical Analysis	C22-433	34268	viswanathan@utm.my visu20@yahoo.com	
Dr. Mukhiddin Muminov	M.Sc. (Tabriz University, Tabris, Iran PhD (Academy Of Science Of Uzbekistan)	Mathematical Physics, Mathematical Analysis	C22-429	34273	mukhiddin@utm.my	
SENIOR LECTURERS						
Dr. Nor Muhainiah Mohd Ali	B.Sc, M.Sc, Ph.D (Universiti Teknologi Malaysia)	Group Theory and its applications	C22-413	34275	normuhainiah@utm.my muhainiah9119@yaho o.com	

Dr. Rashidah Binti Ahmad	BSc (Northen Illinois University, USA) MSc (Northen Illinois University) PhD (Universiti Teknologi Malaysia)	Mathematics (Operations Research)	C10- 335	34351	rashidahahmad@utm. my
Dr. Shariffah Suhaila Syed Jamaludin	BSc Statistics (Carleton University, Canada) MSc Statistics(UKM, Bangi) Phd Statistics (UKM, Bangi)	Hydrological Statistics, Statistical Modeling	C10 425	34317	suhailasj@utm.my
Dr. Shazirawati Mohd Puzi	Bsc (UTM), MSc (Uni of Sussex UK), PhD (UTM)	Computational Mathematics, Wireless Sensor Neighborhood Discovery	C22 419	34240	shazirawati@utm.my
Dr. Syarifah Zyurina binti Nordin	BSc (UTM), MSc (UTM), PhD (Curtin University)	Operational Research	C10-329	34341	szyurina@utm.my
Dr. Yeak Su Hoe	PhD (Nanyang Technology University, Singapore)	Molecular Modeling Numerical Computation	C22 432	34271	s.h.yeak@utm.my yeaksuhoe@gmail. com
Dr. Zaitul Marlizawati Binti Zainuddin	BSc (University of Southampton, UK),	Operational Research	C10 420	34520	zmarlizawati@utm.my

	MSc (University of Salford, UK), PhD (University of Birmingham,					
Dr. Farhana Johar	UK) BSC (UTM) MSC (UTM) Ph.D (University of Southampton, UK)	Operational Research, Numerical, C++ Programming	C22-421	34232	farhanajohar@utm.my	
Dr. Fong Wan Heng	B.Sc. (Hons) (Industrial Mathematics) (UTM) M.Sc. (Mathematics) (UTM) PhD (Mathematics) (UTM)	Pure Mathematics (Group Theory), Formal Language Theory	C10-318	34325	fwh@utm.my, fwheng@hotmail.com	
Dr. Norazlina bt Ismail	BSc(UKM), MSc(UKM), PhD(Massey University)	Statistics, Rainfall modelling	C22-417	34229	i-norazlina@utm.my	
Tn. Hj. Hamisan Rahmat	BSc (Hons) Malaya, MSc (West London)	Numerical Analysis	C22 443	34222	hamisan@utm.my	
Dr. Amidora Binti Idris	Ph.D (Mathematics) , (UTM), M.Sc. (Mathematics) , (UKM), B. Sc. (Mathematics) , (UKM)	Pure Mathematics, Topology, Fuzzy, Brain Science	C10-424	34336	amidora@utm.my	

Academic Staff

Tn. Hj. Ismail Kamis	B.Sc , M. Sc (North Carolina)	Operational Research, Applied Mathematics, Optimization, Ordinary	C13-323	34286	ismailkamis@utm.my	
Dr. Anati Ali	B.Sc (UTM), M.Sc (East Anglia), PhD (UTM)	Applied Mathematics, Fluid Mechanics	C22-415	34262	anati@utm.my	
Dr. Ani Shabri	B.Sc (Hons), M.Sc (UTM) , Ph.D(UKM)	Statistic, Time Series, Flood Frequency Analysis, Flood Distribution Model, Decision Making	C22-426	34238	ani@utm.my	
Dr. Arifah Bahar	B.Sc (Hons) (Manchester), M.Sc (UKM), Ph.D (Strathclyde)	Statistics, Probability Theory and Stochastic Processes, Stochastic Modelling	C10-315	34355	arifah@utm.my	
Che Lokman Jaafar	B.Sc, M.Sc (Ohio)	General Topology, Complex Variable Functions, Logic, Mathematical Analysis	C22-436	34234	clokman@utm.my	
Che Rahim Che Teh	B.Sc (Hons) (Malaya), M.Sc (UTM)	Numerical Analysis	C14-326	34430	crahim@utm.my	
Dr. Faridah Mustapha	B.Sc (Florida State Univ.), M.Sc (E. Kentucky Univ.),	Applied Mathematics (Population Dynamics),	C10-417	34464	faridah@utm.my	

apha

...where great minds are nurtured

Academic Staff

206

	Dip.Ed (UTM), Ph.D (Strathclyde)	Mathematical Biology				
Halijah Osman	B.Sc (Missouri), M.Sc (Kentucky), Dip.Ed (UTM)	Partial Differential Equationas	C15-320	34379	halijahosman@utm. my	
Ibrahim Mohd Jais	B.Sc (North Carolina), M.Sc (Western Carolina)	Applied Mathematics , Fluid Mechanics , Unsteady Convection Symbolic Computation, Computer Systems	C15-318	34390	ibrahimmj@utm.my	
Dr. Maslan Hj. Osman	B.Sc.Ed (Hons) (UTM), M.Sc (Newcastle), Ph.D (Newcastle)	Fluid Mechanics and Heat Transfer, Magnetoconvecti on, Vector Calculus	C15-417	34371	maslan@utm.my	Head Executive Diploma, SPACE, UTM
Dr. Norhaiza Ahmad	B.Sc. (Hons) (UMIST) PhD (Kent)	Statistics, Multivariate Analysis; Bioinformatics: Proteomics, Profiling Expression Data	C10-330	34322	norhaiza@utm.my	
Dr. Fuaada Mohd Siam	B.Sc, M.Sc (UTM), PhD (Strathclyde)	Applied Mathematics (Soliton), Dynamical System	C22-424	34244	fuaada@utm.my	

	-					
Dr. Haliza Abd Rahman	B.Sc (Hons) (UMIST), M.Sc (UKM) PhD (UTM)	Statistics Stochastic Processes, Bayesian and non- parametric modelling	C10-321	34323	halizarahman@utm.my	
Tn. Hj. Zakaria Dollah	B.Sc (Hons) (Malaya), M.Sc (UTM)	Numerical Analysis	C13-331	34300	zakariad@utm.my	
Dr. Zarina Mohd Khalid	B.Sc (Hons.) (Kent), M.Sc (Warwick), Ph.D (Kent)	Actuarial Science, Statistics, Survival Modelling, Longitudinal Data Analysis, Joint Modelling, Missing data, Robus Regression	C10-333	34349	zarinamkhalid@utm.my	
Dr. Nur Arina Bazilah Aziz	B.Sc (UTM), M.Sc (Brunel), PhD (UM)	Operations Research, Inventory Routing Problems	C22-427	34235	nurarina@utm.my	
Dr. Zaiton Mat Isa	B.Sc, M.Sc (UTM), PhD (Queensland)	Applied Mathematics	C22-440	34223	zaitonmi@utm.my	
Dr. Zuhaila Ismail	B.Sc (UTM) ,M.Sc (UTM), PhD (Southampton)	Applied Mathematics (Mathematical Physiology – Blood flow in stenosis artery – Deformation of the human eye)	C22-435	34226	zuhaila@utm.my	

Dr. Mohd Ariff Admon	B.Sc (UTM) , M.Sc (UTM) PhD (Osaka)	Applied Mathematics	C10-416	34338	ariffadmon@utm.my ariff1710@yahoo.com
Dr. Hazzirah Izzati Mat Hashim	B.Sc, M.Sc, PhD (UTM)	Pure Mathematics, Group Theory	C10-311	33547	hazzirah@utm.my
Dr. Niki Anis Ab. Karim	B.Sc, M.Sc, PhD (UTM)	Differential Geometry, Topology, Cryptography, Pure Mathematics, Applied Mathematics.	C13-310	34289	nikianis@utm.my
Dr. Muhammad Fauzee Hamdan	B.Sc, M.Sc (UTM), Ph.D (UKM)	Statistics	C13-327	34285	fauzee77@hotmail. com mfauzee@utm.my
LECTURERS					
Taufiq Khairi bin		Applied			
Ahmad Khairuddin	BSc (UTM), MSc (UTM)	Mathematics and Statistics	C22-431	34225	taufiq@utm.my
Ahmad		Mathematics and	C22-431 C10-327	34225 34337	taufiq@utm.my wrukaida@utm.my
Ahmad Khairuddin Wan Rukaida	(UTM) BSc (UTM,), MSc	Mathematics and Statistics Applied Mathematics,			
Ahmad Khairuddin Wan Rukaida Wan Abdullah Noraslinda	(UTM) BSc (UTM,), MSc (UTM) B.Sc (Hons) (UPM), M.Sc	Mathematics and Statistics Applied Mathematics, Numerical Methods	C10-327	34337	wrukaida@utm.my

Academic Staff

	Mathematics		

DEPARTMENT OF PHYSICS

NAME	QUALIFICATION	SPECIALIZATION	ROOM NO.	TEL. NO	E-MAIL	POST
HEAD OF DEPARTM	ENT					
Assoc. Prof. Dr. Wan Muhamad Saridan bin Wan Hassan	B.Sc.Ed (Hons) (UTM), M.Sc (California), Ph.D (Aberdeen)	Medical Imaging, Health Physics	C20 212	34191	wmsaridan@utm.my	Head of Physics Department
PROFESSOR						
Dr. Noriah Binti Bidin	B.Sc (Hons), Dip.Ed. (UKM), M.Sc. (Loughborough), Ph.D (UTM)	Laser Design, Construction, Interferometry, High-speed Photography, Holography	T05-05- 02	10292	noriah@utm.my	Director Laser Center
Dr. Md Rahim Bin Sahar	B.Sc (UKM), M.Sc (Kent), Ph.D (Warwick), MASS, MMSS	Glass and Ceramics, Laser Materials	C20-111	34184	rahimsahar@utm.my	
Dr. Jalil Ali	B.Sc (Hons), M.Sc (Malaya), Ph.D (UTM), MIFM	Plasma Physics/Nuclear Fusion/Photonics/O ptoelectronics/Lase rs/High Energy X- rays and Pulse Neutrons	C21-413	34077	jalilali@utm.my djxxx_1@yahoo.com	

...where great minds are nurtured

210

		Applications/Flexibl				
		e Solar Cells Applications/Physic s(Theoritical/Mathe matical/Computati onal)				
Dr. Zulkafli Othaman	B.Sc.Ed (Hons) (UTM), M.Sc (Oregon), Ph.D (Bath), MIFM, MASS	Semiconductor, Quantum Devices, Nano-structures	C20-310	34189	zulkafliothaman@utm.my	
Dr. Rosli Husin	B.Sc (Hons) (UKM), M.Sc (West London), Ph.D (Warwick), MASS	Solid State Physics, NMR, Glass & Ceramics	C21-127	34063	roslihussin@utm.my	
ASSOCIATE PROFES	SOR					
Dr. Sib Krishna Ghoshal	B.Sc, M.Sc (Calcutta), Ph.D (Jawaharlal Nehru)	Condensed Matter Physics, Materials Science, Nanoscience, Laser & Fiber, Computational Modeling And Simulation	C17- 408	34024	sibkrishna@utm.my lordshib@gmail.com	
Dr. Hazri B. Bakhtiar	B.Sc (Hons) (France), M.Sc (Metz, France), Ph.D (Metz, France), MASS	 Microelectronic, Radiation & Hardness Study Laser and Non- Linear Optic Application 	C20-106	34197	hazri@utm.my	

Academic Staff

		3. Electronic and Optoelectronic Devices				
Dr. Yusof Munajat	B.Sc (Hons) (UKM), M.Sc (W. London), Ph.D (UTM), MIFM	Laser Interaction, High Speed Optical Imaging, Laser Induced Breakdown Spectroscopy, Terahertz Spectroscopy and Imaging.	C20-311	34194	yusofm@utm.my	
Dr. Karim Deraman	B.Sc (Hons), M.Sc (UKM), Ph.D (UTM), MASS	Thin Film Materials	C21-126	34091	karimd@utm.my	
Dr. Md Supar Rohani	B.Sc (Hons) (UKM), M.Sc (West London), Ph.D (Warwick), MASS, MSNT	Ultrasound, Optical Materials, NDT	C21-118	34074	mdsupar@utm.my	
Dr. Zuhairi Ibrahim	B.Sc (Hons), M.Sc (Essex), PhD (UTM)	Methane Sensor based on doped Stannic Oxide	C20-103	34186	zuhairi@utm.my	
Dr. Suhairul Hashim	B.Sc (UKM), MSc (Surrey), PhD (UTM)	Medical Physics, Radiation Dosimetry	C20-213	34195	suhairul@utm.my	
Dr. Ramli Arifin	B.Sc (Hons) (UKM), Dip.Ed, M.Sc (UTM)	Glass & Ceramics	C21-315	34185	ramliarifin@utm.my	

Academic Staff

(212)

SENIOR LECTURERS					
Dr. Abdul Khamim Ismail	B.Sc (Hons), M.Sc (UTM), PhD. (Newcastle)	Physics and instrumentation, Nano-sensors	C20-214	34064	khamim@utm.my
Abdul Rashid Abdul Rahman	B.Sc, M.Sc (Sheffield)	Magnetism, Properties of Low Temperature, Energy	C20-105	34207	abdulrashid@utm.my
Dr. Mohammad Alam Saeed	BSc (Punjab University, Lahore), MSc, M,Phil and PhD (Punjab University, Lahore)	High Energy Physics, Radiation Physics	C21-209	34087	saeed@utm.my, moalsd@hotmail.com
Dr. Izyan Hazwani Binti Hashim	BSc(UTM), MSc(UTM), PhD(Osaka University)	Nuclear and Particle Physics	C21-217	013- 7005303	izyan@utm.my
Dr. Rosnita Bt Muhammad	BSc (UTM) MSc (UTM) PhD (UTM)	Nanofabrication, Nanomaterials, Thin Films, Material Science, Compound Semiconductor	C20 104	34199	rosnita@utm.my atinsor@gmail.com
Dr. Amiruddin bin Shaari	B.Sc (U.S.A), M.Sc (California State), Ph.D (Liverpool)	Nondestructive Testing & Computational Physics	C21-215	34080	amiruddin@utm.my
Dr. Yap Yung Szen	BSc (UTM) MSc (UTM) PhD	Microwave, Quantum	C21-219	34076	yungszen@utm.my

	1				·	
	(Osaka University, Japan)	Computer, Low Temperature				
Dr. Raja Kamarulzaman Raja Ibrahim	BSc (UTM) Mpil (University of Southampton, UK) PhD (The University of Manchester, UK)	Gas spectroscopy Non-thermal plasma technology Optical fiber sensors	C20 - 404	34192	rkamarulzaman@utm.my	
Dr. Rashid Ahmed	BSc: University of the Punjab, Lahore, Pakistan MSc: University of the Punjab, Lahore, Pakistan M. Phil: University of the Punjab, Lahore, Pakistan PhD: University of the Punjab, Lahore, Pakistan	Computational Material Science; Energy Materials; Optoelectronic materials, Spintronics Materials, Solid Thin Films, Solar Cell Materials, Hydrogen Energy Storage Materials, Thermoelectric Materials	C21-212	34095	rashidahmed@utm.my	
Dr. Abd. Rahman Tamuri	B.Sc (UTM), PhD(UTM),	Laser Science and Engineering, Instrumentation Design, Theoretical Physics	C21-111	34067	rahmantamuri@utm. my	
Dr. Roslinda binti Zainal	B.Sc (Hons), M.Sc (UTM), PhD(UTM)	Instrumentation Design, LASER Science and Engineering	C20-204	34198	roslinda@utm.my	

Academic Staff

Dr. Wan Nurulhuda Wan Shamsuri	B.Sc (Salford), M.Sc (UTM), PhD (UTM), MASS,	Thin Film, Gas Sensors	C21-125	34061	wnurulhuda@utm.my
Dr. Ganesan a/I Krishnan	B.Sc, M.Sc, Ph.D (UTM)	Physics	T05-05 (Laser Centre)	34067	k.ganesan@utm.my
Mohamed Noor Muhamad	B.Sc (Hons) (Brimingham), M.Sc (London)	X-Ray Crystallography, High Alumina Cement, SEM	C21-316	34119	mdnoor@utm.my
Mohd Khalid Kasmin	B.A (Macalester College), M.Sc (UTM)	Computer Interfacing, Networking	C20-305	34196	mkhalid@utm.my
Dr. Muhammad Arif Jalil	B.Sc, Ph.D (UTM)	Nanophotonics	C21-415	34086	arifjalil@utm.my
Muhammad Zaki Yaacob	BSc (hons) UKM, MSc (Physics) University of Sussex	Semiconductor Physics, Analog Electronics	C20-205	34188	mzaki@utm.my
Dr. Ezza Syuhada Sazali	BSc. MSc. PhD (UTM)	Material Science Nanomaterial Amorphous Glass Optical, Structural and Mechanical Properties	C21-119	34066	ezzasyuhada@utm.my
Dr. Muhammad Safwan Abd Aziz	B.Sc, Ph.D (UTM)	Physics	T05-05- 07 (Laser Centre)	5610349	safwanaziz@utm.my
Dr. Nabilah Kasim	B.Sc, Ph.D (UTM)	Physics	C20-203	34190	k.nabilah@utm.my

Dr. Suzairi Daud	B.Sc, M.Sc, Ph.D (UTM)	Physics	T05-05- 08 (Laser Centre)	5610344	suzairidaud@utm.my
Dr. Nor Ain binti Husein	B.Sc (UTM), Ph.D (UTM)	Photonics	C21-313	34057	norainh@utm.my
Dr. Koh Meng Hock	B.Sc (UTM), MSc (UM), PhD (UTM- University of Bordeaux)	Theoretical Nuclear Physics, Fission- barrier calculations	C20-304	34254	kmhock@utm.my
Dr. Kashif Tufail Chaudhary	B.Sc. (Punjab), M.Sc, Ph.D (UTM)	Physics	T05-05 (Laser Centre)	10343	kashif@utm.my
Dr. Mohammad Alam Saeed	B.Sc, M.Sc, Mphill, Ph.D (Punjab)	Science Physics	C21-209	34087	saeed@utm.my
Dr. Mahdi Bahadoran	B.Sc, M.Sc (Shiraz), Ph.D (UTM)	Photonics	T05-05 (Laser Centre)		bahadoran@utm.my
Husni Hani Jameela Binti Sapingi	PhD (Cardiff University)	Laser fabrication and characterization	C20 210	34206	husnihani@utm.my
Suhaila M Buhari	BSc (UTM) MSc (Warsaw University of Technology)	Ionospheric physics, GPS data processing	C20-415	34111	suhailamb@utm.my
Faizani bin Mohd. Noor	B.Sc (UTM), MSc. (UTM)	Laser Science,Theoretical Physics	C21-427	34079	faizani@utm.my
LECTURERS					
Masleeyati Binti Yusop	BSc (UKM), MSc (UKM)	Materials, Ceramics	C21-211	34085	masleeyati@utm.my

TUTOR						
Mohd. Asmu'i bin Mohd Akil	B.Sc (UTM)	Fiber Optic, Instrumentation Design	C21-218	34093	asmui@utm.my	
Maisarah binti Duralim	B.Sc (UTM)	Photonics	C21-208	34069	maisarah@utm.my	
Razif bin Razali	B.Sc (UTM)	Instrumentation, Theoretical Physics and Computational Science	C20-211	34081	razifrazali@utm.my	
Norehan binti Mohd. Nor	B.Sc (UTM)	Health Physics	C21-220	34115	norehan@utm.my	
Fairuz Diyana binti Ismail	B.Sc (UTM)	Photonics	C21-115	34066	fairuzdiyana@utm.my	
Siti Sarah binti Safaai	B.Sc (UTM)	Plasma Physics,Instrumenta tion Design	C21-309	34094	sarahsafaai@utm.my	

